题目描述

明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应
该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。他这次又准备带一些受欢迎的食物,
如:蜜桃多啦,鸡块啦,承德汉堡等等当然,他又有一些稀奇古怪的限制:每种食物的限制如下:
承德汉堡:偶数个
可乐:0个或1个
鸡腿:0个,1个或2个
蜜桃多:奇数个
鸡块:4的倍数个
包子:0个,1个,2个或3个
土豆片炒肉:不超过一个。
面包:3的倍数个
注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛
),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。

输入

输入一个数字N,1<=n<=10^500

输出

如题

样例输入

输入样例1
1
输入样例2
5

样例输出

输出样例1
1
输出样例2
35
 
对于每种食物的限制,我们可以用多项式形式来表示,$a_{i}x^i$表示这种食物取$i$个时的方案数是$a_{i}$。
那么对于每种食物,我们可以列出对应多项式,答案就是将所有多项式相乘后$x^n$的系数。
承德汉堡:$\sum\limits_{i=0}^{+\infty}x^{2i}=\frac{1}{1-x^2}$
可乐:$1+x$
鸡腿:$1+x+x^2=\frac{x^3-1}{x-1}$
蜜桃多:$\sum\limits_{i=0}^{+\infty}x^{2i+1}=\frac{x}{1-x^2}$
鸡块:$\sum\limits_{i=0}^{+\infty}x^{4i}=\frac{1}{1-x^4}$
包子:$1+x+x^2+x^3=\frac{x^4-1}{x-1}$
土豆片炒肉:$1+x$
面包:$\sum\limits_{i=0}^{+\infty}x^{3i}=\frac{1}{1-x^3}$
由等比数列求和公式即可推得等式右边的部分,那么将所有生成函数都乘起来就能得到:$\frac{x}{(1-x)^4}$
根据泰勒展开可以知道$\frac{1}{(1-x)^m}=(1+x+x^2+x^3+……)^m$,求第$n$项系数就是$C_{m+n-1}^{m-1}$
乘上$x$就相当于把系数都右移一位,即求第$n-1$项系数为$C_{m+n-2}^{m-1}$,将$m=4$代入,那么答案就是$C_{n+2}^{3}$。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define mod 10007
using namespace std;
int ans;
int n;
char s[1000];
ll quick(int x,int y)
{
ll res=1ll;
while(y)
{
if(y&1)
{
res=res*x%mod;
}
y>>=1;
x=1ll*x*x%mod;
}
return res;
}
int main()
{
scanf("%s",s+1);
int len=strlen(s+1);
for(int i=1;i<=len;i++)
{
n=n*10+s[i]-'0';
n%=mod;
}
ans=n*(n+1)%mod;
ans=ans*(n+2)%mod;
ans=ans*quick(6,mod-2)%mod;
ans=(ans%mod+mod)%mod;
printf("%d",ans);
}

BZOJ3028食物——生成函数+泰勒展开的更多相关文章

  1. BZOJ3028: 食物(生成函数)

    题意 链接 Sol 生成函数入门题. 对每个物品分别列一下,化到最后是\(\frac{x}{(1-x)^4}\) 根据广义二项式定理,最后答案是\(C_{(N - 1) + 4 - 1}^{4-1} ...

  2. BZOJ3028 食物 (生成函数)

    首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...

  3. BZOJ3028 食物(生成函数)

    显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+…… ...

  4. 2018.12.30 bzoj3028: 食物(生成函数)

    传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21​ ...

  5. 【bzoj3028】 食物 生成函数+隔板法

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 这题的推导很妙啊,裸的推母函数的题. 我们首先构造出每种食物的母函数: 汉堡:$ ...

  6. BZOJ 3028 食物 (生成函数+数学题)

    题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...

  7. bzoj3028食物

    http://www.lydsy.com/JudgeOnline/problem.php?id=3028 好吧,这是我第一道生成函数的题目. 先搞出各种食物的生成函数: 汉堡:$1+x^2+x^4+. ...

  8. BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] De ...

  9. BZOJ3028 食物 和 LOJ6261 一个人的高三楼

    总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...

随机推荐

  1. 博弈论进阶之Every-SG

    Every-SG 给定一张无向图,上面有一些棋子,两个顶尖聪明的人在做游戏,每人每次必须将可以移动的棋子进行移动,不能移动的人输 博弈分析 题目中的要求实际是"不论前面输与否,只要最后一个棋 ...

  2. arcgis api 3.x for js 入门开发系列十叠加 SHP 图层(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  3. Android为TV端助力 集成第三方播放器,实现全屏播放

    下面这Demo链接:Android实现全屏播放,各种格式支持直播,点播,不收费!

  4. python(day16)内置函数,匿名函数

    # add = lambda x,y:x+y # print(add(1,2)) # dic={'k1':10,'k2':100,'k3':30} # def func(key): # return ...

  5. dotnet core 入门命令

    官方资料: https://docs.microsoft.com/zh-cn/dotnet/core/tools/dotnet-restore?tabs=netcore2x 常规 项目引用 NuGet ...

  6. SQL Server -- 回忆笔记(三):ADO.NET之C#操作数据库

    SQL Server知识点回忆篇(三):ADO.NET之C#操作数据库 1.连接数据库 (1)创建连接字符串: 使用windows身份验证时的连接字符串: private string conStr= ...

  7. Allowed memory size of 134217728 bytes exhausted解决办法(php内存耗尽报错)【简记】

    报错: PHP Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 72 bytes) i ...

  8. redis快照持久化和aof日志持久化

    持久化就是即使断电/重启需要存储的数据不会丢失,即将数据存储在设备中,一般存在硬盘内 redis的持久化有2种方式 :1-rdb快照  2-aof日志,可以通过配置redis.conf文件进行配置 r ...

  9. HybridStart混合应用开发框架

    转自我的博客,原文地址:http://refined-x.com/2017/06/26/%E5%9F%BA%E4%BA%8EAPICloud%E7%9A%84%E6%B7%B7%E5%90%88%E5 ...

  10. 我的第一个python web开发框架(27)——定制ORM(三)

    在上一章中,我们已经创建好ORM的基类了,接下来要做的就是将基类的常用方法一一实现. 首先我们来看看之前项目中,最常见的获取指定主键的记录实体 @get('/api/product/<id:in ...