高斯消元求解n元一次线性方程组的板子题:

先举个栗子:

• 2x + y -   z =  8-----------①
•-3x - y + 2z = -11---------②
•-2x + y + 2z = -3----------③
 先将它存到矩阵中:

②+①* (2/3)

③+①

接着对①变换

得到x,y,z;

但是我们想到,如果它有在原方程中就有两个或多个方程本质上是一样的,那他不就解不出来了咩?

比如:

最后得出:

这显然就属于无解的情况

又比如:

这显然就属于无穷多解的情况

这里我们引入一个定理:

一个矩阵的行列式如果不为0,方程组有唯一解,否则无解或者无穷多解


然后我们就可以通过计算行列式来判断有无解辣!


高斯消元求解线性方程组的步骤:

Step1:利用高斯消元将原矩阵(蒟阵 变为对角矩阵    

   具体方法:将a[i][i]除成1,这一行也进行同样的变换,用这个1去消其他的项

Step2:将对角线上的值连乘得到行列式
    一个矩阵的行列式如果不为0,方程组有唯一解,否则无解或者无穷多解
 

在将原矩阵变为对角矩阵的过程中,线性方程组就已经消成了ax=b的形式,故只需要判断有无解即可;

求行列式:

先了解一下运算法则:传送门

行列式的计算:

举两个例子

测试代码如下(注意是这里输入n是未知数个数,m是方程个数,对于这个题mn输入一样的就可以辣!):

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}
//head
int n,m;
double a[][]; bool check(int k){
if(fabs(a[k][n+])<eps)return ;
rep(i,,n)
if(fabs(a[k][i])>eps)return ;
return ;
}
int main(){ n=read();m=read();
// a_i,1 a_i,2 ... a_i,n a_i,n+1
rep(i,,m)
rep(j,,n+)a[i][j]=read();
rep(j,,m){
rep(k,,n+)cout<<a[j][k]<<" ";
puts("");
}
int flag=;
rep(i,,n){
int t=i;
while(a[t][i]== && t<=n)t+=;
if(t==n+){
flag=;
continue;
}
rep(j,,n+)swap(a[i][j],a[t][j]);//交换两行
double kk=a[i][i];//每一行对角线上的值
rep(j,,n+)a[i][j]/=kk;
rep(j,,m)//循环m个式子 开始消元
if(i!=j){
double kk=a[j][i];
rep(k,,n+)
a[j][k]-=kk*a[i][k];//这样就能保证正好把第i列的数除了a[i][i] 都消成0
}
puts("------------");
rep(j,,m){
rep(k,,n+)cout<<a[j][k]<<" ";
puts("");
}
}
if(flag){//如果flag=1,可能是 无解,也可能是无穷解
rep(i,,m)
if(!check(i)){
printf("No solution\n");
return ;
}
printf("So many solutions\n");
} }

本题AC代码:稍微改一下就行啦

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}
//head
int n,m;
double a[][]; bool check(int k){
if(fabs(a[k][n+])<eps)return ;
rep(i,,n)
if(fabs(a[k][i])>eps)return ;
return ;
}
int main(){ n=read();m=n;
// a_i,1 a_i,2 ... a_i,n a_i,n+1
rep(i,,m)
rep(j,,n+)a[i][j]=read(); int flag=;
rep(i,,n){
int t=i;
while(a[t][i]== && t<=n)t+=;
if(t==n+){
flag=;
continue;
}
rep(j,,n+)swap(a[i][j],a[t][j]);//交换两行
double kk=a[i][i];//每一行对角线上的值
rep(j,,n+)a[i][j]/=kk;
rep(j,,m)//循环m个式子 开始消元
if(i!=j){
double kk=a[j][i];
rep(k,,n+)
a[j][k]-=kk*a[i][k];//这样就能保证正好把第i列的数除了a[i][i] 都消成0
}
}
if(flag){ return printf("No Solution\n"),;
}
rep(j,,m){
printf("%.2lf",a[j][n+]/a[j][j]);
puts("");
} }

P3389 【模板】高斯消元法的更多相关文章

  1. 洛谷P3389 【模板】高斯消元法

    P3389 [模板]高斯消元法 题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 n 第二至 n+1行,每行 n+1 个整数,为a1​,a ...

  2. 题解 P3389 【【模板】高斯消元法】

    题解 P3389 [[模板]高斯消元法] 看到大家都没有重载运算符,那我就重载一下运算符给大家娱乐一下 我使用的是高斯-约旦消元法,这种方法是精度最高的(相对地) 一句话解释高斯约旦消元法: 通过加减 ...

  3. 洛谷——P3389 【模板】高斯消元法

    P3389 [模板]高斯消元法 以下内容都可省略,直接转大佬博客%%% 高斯消元总结 只会背板子的蒟蒻,高斯消元是什么,不知道诶,看到大佬们都会了这个水题,蒟蒻只好也来切一切 高斯消元最大用途就是解多 ...

  4. 洛谷P3389 【模板】高斯消元法(+判断是否唯一解)

    https://www.luogu.org/problemnew/show/P3389 这里主要说说怎么判断不存在唯一解 我们把每一行的第一个非零元称为关键元 枚举到一个变量,如果剩下的行中该变量的系 ...

  5. 【洛谷P3389 【模板】高斯消元法】

    这是个版子题,当然本蒟蒻也是看了好几天才明白 对于这样的线性方程组,我们可以看成是一个矩阵 对于百度百科给的定义(我感到很迷)赶脚和行列式有的一拼 但我们要注意的是: 行列式是一个确切的值(有关行列式 ...

  6. 【luogu P3389 高斯消元法】 模板

    题目链接: gauss消元求线性方程组的解. 这道题对于多解和无解都输出No solution #include <algorithm> #include <cstdio> # ...

  7. 洛谷 P3389 【模板】高斯消元法

    以下这个好像叫高斯约旦消元法,没有回代 https://www.luogu.org/blog/37781/solution-p3389 #include<cstdio> #include& ...

  8. 【洛谷P3389】(模板)高斯消元

    对于高斯消元法求解线性方程组, 我的理解就类似于我们在做数学题时的加减消元法, 只是把它写成一个通用的程序运算过程 对于一个线性方程组,我们从左往右每次将一列对应的行以下的元通过加减消元消去, 每个元 ...

  9. 「LuoguP3389」【模板】高斯消元法

    题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 nn 第二至 n+1n+1行,每行 n+1n+1 个整数,为a_1, a_2 \cdot ...

随机推荐

  1. Mysql 数据库常用配置命令

    1.查看mysql数据库默认编码: mysql> show variables like "character%"; +--------------------------+ ...

  2. 第三篇 Html-label标签

    label标签 用户获取文字,使得关联的标签获取光标 <!DOCTYPE html> <html lang="en"> <head> <m ...

  3. spring学习总结——高级装配学习一(profile与@Conditional)

    前言: 在上一章装配Bean中,我们看到了一些最为核心的bean装配技术.你可能会发现上一章学到的知识有很大的用处.但是,bean装配所涉及的领域并不仅仅局限于上一章 所学习到的内容.Spring提供 ...

  4. 使用django 中间件在所有请求前执行功能

    django中间是一个轻级,低耦合的插件,用来改变全局的输入和输出. 一 如何使用中间件 定义中间件 注册中间件 # 这是一个中间件代码片段的说明,在各个位置的代码将在何时执行 def simple_ ...

  5. C#中FormsAuthentication用法实例

    ....本文纯属抄袭....   using System; using System.Web; using System.Web.Security;   namespace AuthTest {   ...

  6. 9102 IT人保持记忆力及健康的方法

    做技术时间久了,我们会发现有的时候我们会感觉记忆力衰减太快,前脚刚忙完的事或者刚做完计划任务没多久就遗忘了,或者是以前轻车熟入的方法死活都记不起来了,亦或者之前学习一门技术很快就掌握真谛,现在即便花N ...

  7. 用人类社会工程学对C语言中的一些基本概念的剖析与理解

    最近在学C语言程序设计时总是遇到一些概念理解上的不清晰与混乱的地方,在一次偶然间想到了以前看过的一部电影<我是谁,没有一个系统是安全的>,里面的主角用社会工程学的想法结合黑客知识化险为夷, ...

  8. DISK 100% BUSY,谁造成的?(ok)

    iostat等命令看到的是系统级的统计,比如下例中我们看到/dev/sdb很忙,如果要追查是哪个进程导致的I/O繁忙,应该怎么办? # iostat -xd ... Device: rrqm/s wr ...

  9. Linux删除隐藏文件

    方法2.ls -a 查询隐藏文件 将后缀名为.swp的文件删除 rm -f .nginx.conf.swp 再次编辑文件不在出现提示警告!

  10. rm: cannot remove ‘overlay/’: Device or resource busy

    umount /var/lib/docker/overlay #取消挂载就可以啦 rm -rf overlay/