Sequence
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 6893   Accepted: 1534
Case Time Limit: 2000MS

Description

Given a sequence, {A1, A2, ..., An} which is guaranteed A1 > A2, ..., An,  you are to cut it into three sub-sequences and reverse them separately to form a new one which is the smallest possible sequence in alphabet order.

The alphabet order is defined as follows: for two sequence {A1, A2, ..., An} and {B1, B2, ..., Bn}, we say {A1, A2, ..., An} is smaller than {B1, B2, ..., Bn} if and only if there exists such i ( 1 ≤ in) so that we have Ai < Bi and Aj = Bj for each j < i.

Input

The first line contains n. (n ≤ 200000)

The following n lines contain the sequence.

Output

output n lines which is the smallest possible sequence obtained.

Sample Input

5
10
1
2
3
4

Sample Output

1
10
2
4
3

Hint

{10, 1, 2, 3, 4} -> {10, 1 | 2 | 3, 4} -> {1, 10, 2, 4, 3}
白书上的题目。第一道后缀数组,直接看了答案,但是没看懂。。。
第一段翻转很好求,直接翻转然后后缀数组。第二段第三段则有些问题,因为可能第二段比较短,虽然最小,但是是其他某个串的前缀,可能会出错(自己yy的,网上有反例)

9
8 4 -1 5 0 5 0 2 3
第一步:
3 2 0 5 0 5 -1 4 8 对应输出 -1 4 8
第二步
3 2 0 5 0 5(开始的时候我并没有复制一遍) 对应输出:0 5
第三步
3 2 0 5    对应输出: 3 2 0 5
可以看见这样做是不对的。。
必须要将剩下的字符串复制一遍贴在后面,然后再来求后缀数组。。。
正解:
第一步:
3 2 0 5 0 5 -1 4 8 对应输出 -1 4 8
第二步
3 2 0 5 0 5 3 2 0 5 0 5 对应输出: 0 5 0 5;
第三步
3 2 对应输出:3 2;

最后值得注意的是此题还要用离散化。。因为并没有告诉我们输入的数据有多大。。。。。(其实不用离散化,离散化是因为用的基数排序,快排就没这个问题了)


然后就是把第一段截掉剩余的东西翻转,复制一遍接在后面,再做后缀数组。

程序里的第二个循环值得注意,当p2=m-sa[i]+1+p1 p1<p2<n时成立退出,为什么是这个式子?这里我也不太懂,但是我们可以发现,当sa[i]位于复制后的字符串的前一段是才可以,那么sa[i]肯定是小于m的,

8 7 6 5 4 3 8 7 6 5 4 3 sa[i]=3

注意,是sa[i]=3,所以我们截得的字符串不是8 7 6和5 4 3 而是8 7和6 5 4 3,因为sa[i]表示的是这个位置到结尾的后缀。所以我们的第二串长度是m-sa[i]+1,在原串中的位置是p1+len=p1+m-sa[i]+1

那么我们可以发现p1<p2<n。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 400010
int n,m,k;
int a[N],rank[N],temp[N],sa[N],rev[N];
bool cp(int i,int j)
{
if(rank[i]!=rank[j]) return rank[i]<rank[j];
int ri=i+k<=n?rank[i+k]:-;
int rj=j+k<=n?rank[j+k]:-;
return ri<rj;
}
void Sa(int a[],int n)
{
for(int i=;i<=n;i++)
{
sa[i]=i; rank[i]=a[i];
}
for(k=;k<=n;k*=)
{
sort(sa+,sa+n+,cp);
temp[sa[]]=;
for(int i=;i<=n;i++)
temp[sa[i]]=temp[sa[i-]]+(cp(sa[i-],sa[i]));
for(int i=;i<=n;i++) rank[i]=temp[i];
}
}
void solve()
{
reverse_copy(a+,a+n+,rev+);
Sa(rev,n);
int p1=;
for(int i=;i<=n;i++)
{
p1=n-sa[i]+;
if(p1>&&n-p1>=) break;
}
memset(rev,,sizeof(rev));
int m=n-p1;
reverse_copy(a+p1+,a+n+,rev+);
reverse_copy(a+p1+,a+n+,rev+m+);
Sa(rev,*m);
int p2=;
for(int i=;i<=*m;i++)
{
p2=m-sa[i]++p1;
if(p2>p1&&p2<n) break;
}
for(int i=p1;i>=;i--) printf("%d\n",a[i]);
for(int i=p2;i>p1;i--) printf("%d\n",a[i]);
for(int i=n;i>p2;i--) printf("%d\n",a[i]);
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
solve();
return ;
}

poj3581的更多相关文章

  1. [POJ3581]Sequence

    [POJ3581]Sequence 题目大意: 给定序列\(A_{1\sim n}\),其中\(A_1\)为最大的数.要把这个序列分成\(3\)个非空段,并将每一段分别反转,求能得到的字典序最小的序列 ...

  2. POJ3581 Sequence —— 后缀数组

    题目链接:https://vjudge.net/problem/POJ-3581 Sequence Time Limit: 5000MS   Memory Limit: 65536K Total Su ...

  3. POJ3581 Sequence(后缀数组)

    题意:给一个串,串的第一个字符比后面的都大,要把它分成三段,然后反转每一段,求能得到的字典序最小的串是什么. 首先,第一段是可以确定的:把原串反转,因为第一个字符是最大的,它是唯一的,不存在反转串的后 ...

  4. POJ3581:Sequence(后缀数组)

    Description Given a sequence, {A1, A2, ..., An} which is guaranteed A1 > A2, ..., An,  you are to ...

  5. POJ3581 后缀数组

    http://poj.org/problem?id=3581 这题说是给了N个数字组成的序列A1 A2 ..An 其中A1 大于其他的数字 , 现在要把序列分成三段并将每段分别反转求最小字典序 以后还 ...

  6. POJ3581:Sequence——题解

    http://poj.org/problem?id=3581 给一串数,将其分成三个区间并且颠倒这三个区间,使得新数列字典序最小. 参考:http://blog.csdn.net/libin56842 ...

  7. 【后缀数组】poj3581 Sequence

    考虑第一次切割,必然切割的是翻转后字典序最小的前缀,伪证: 若切割位置更靠前:则会导致第一个数翻转后更靠前,字典序必然更大. 若切割位置更靠后,则显然也会导致字典序更大. ↑,sa即可 对于第二次切割 ...

  8. sa learning

    后缀数组之前一直在给队友搞,但是这个类太大了,预感到青岛八成会有,于是自己也学习一下,记录一下做题的历程 所用的模板暂时来自于队友的倍增nlogn da算法 int t1[maxn] , t2[max ...

随机推荐

  1. 分享一个单点登录、OAuth2.0授权系统源码(SimpleSSO)

    SimpleSSO 关于OAuth 2.0介绍: http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html 系统效果: 登录界面: 首页: 应用界面: ...

  2. C#开发微信门户及应用(37)--微信公众号标签管理功能

    微信公众号,仿照企业号的思路,增加了标签管理的功能,对关注的粉丝可以设置标签管理,实现更加方便的分组管理功能.开发者可以使用用户标签管理的相关接口,实现对公众号的标签进行创建.查询.修改.删除等操作, ...

  3. 关于xml加载提示: Error on line 1 of document : 前言中不允许有内容

    我是在java中做的相关测试, 首先粘贴下报错: 读取xml配置文件:xmls\property.xml org.dom4j.DocumentException: Error on line 1 of ...

  4. spring框架之javaconfig

    简介:随着java5的推出,加上当年基于纯java annotation的依赖注入框架Guice的出现,spring推出并持续完善了基于java代码和annotation元信息的依赖关系绑定描述方法, ...

  5. jQuery版AJAX简易封装

    开发过程中,AJAX的应用应该说非常频繁,当然,jQuery的AJAX函数已经非常好用,但是小编还是稍微整理下,方便不同需求下,可以简化输入参数,下面是实例代码: $(function(){ /** ...

  6. JavaScript 函数表达式

    JavaScript中创建函数主要有两种方法:函数声明和函数表达式.这两种方式都有不同的适用场景.这篇笔记主要关注的是函数表达式的几大特点以及它的使用场景,下面一一描述. 主要特点 可选的函数名称 函 ...

  7. HTML中的标记-遁地龙卷风

    第三版 上一版本在未经验证的情况下,盲目的认为很多东西是那样,造成错误,非常抱歉. 0.什么是标记 <input type="checkbox" checked />& ...

  8. Scala 包

    包的绝对地址_root_.开始 如_root_.scala.collection.mutable.ArrayBuffer

  9. 12、产品经理要阅读的书籍 - IT软件人员书籍系列文章

    产品经理是软件产品的主要领导者.不同于项目经理,产品经理是对产品负责,更多的是负责产品的设计定型:而项目经理则对项目负责,更多的是负责项目软件的实现.产品经理的一些工作,和项目经理是一致的,比如需求分 ...

  10. 一个典型的MapRuduce实例------webcount(网站统计访客信息)

    统计某一特定网站的某个时辰访客人数 所用版本:hadoop2.6.5 数据样式如下: 111.111.111.111 - - [16/Dec/2012:05:32:50 -0500] "GE ...