tensorflow 1.0 学习:用别人训练好的模型来进行图像分类
谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类。
下载地址:https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip
下载完解压后,得到几个文件:
其中的classify_image_graph_def.pb 文件就是训练好的Inception-v3模型。
imagenet_synset_to_human_label_map.txt是类别文件。
随机找一张图片:如
对这张图片进行识别,看它属于什么类?
代码如下:先创建一个类NodeLookup来将softmax概率值映射到标签上。
然后创建一个函数create_graph()来读取模型。
最后读取图片进行分类识别:
# -*- coding: utf-8 -*- import tensorflow as tf
import numpy as np
import re
import os model_dir='D:/tf/model/'
image='d:/cat.jpg' #将类别ID转换为人类易读的标签
class NodeLookup(object):
def __init__(self,
label_lookup_path=None,
uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
model_dir, 'imagenet_synset_to_human_label_map.txt')
self.node_lookup = self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path):
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
p = re.compile(r'[n\d]*[ \S,]*')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
uid = parsed_items[0]
human_string = parsed_items[2]
uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID.
node_id_to_uid = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name return node_id_to_name def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id] #读取训练好的Inception-v3模型来创建graph
def create_graph():
with tf.gfile.FastGFile(os.path.join(
model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='') #读取图片
image_data = tf.gfile.FastGFile(image, 'rb').read() #创建graph
create_graph() sess=tf.Session()
#Inception-v3模型的最后一层softmax的输出
softmax_tensor= sess.graph.get_tensor_by_name('softmax:0')
#输入图像数据,得到softmax概率值(一个shape=(1,1008)的向量)
predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})
#(1,1008)->(1008,)
predictions = np.squeeze(predictions) # ID --> English string label.
node_lookup = NodeLookup()
#取出前5个概率最大的值(top-5)
top_5 = predictions.argsort()[-5:][::-1]
for node_id in top_5:
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score)) sess.close()
最后输出:
tiger cat (score = 0.40316)
Egyptian cat (score = 0.21686)
tabby, tabby cat (score = 0.21348)
lynx, catamount (score = 0.01403)
Persian cat (score = 0.00394)
tensorflow 1.0 学习:用别人训练好的模型来进行图像分类的更多相关文章
- 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...
- 三分钟快速上手TensorFlow 2.0 (上)——前置基础、模型建立与可视化
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(sha ...
- tensorflow 1.0 学习:模型的保存与恢复(Saver)
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...
- tensorflow 1.0 学习:用CNN进行图像分类
tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1 ...
- tensorflow 1.0 学习:模型的保存与恢复
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...
- TensorFlow 同时调用多个预训练好的模型
在某些任务中,我们需要针对不同的情况训练多个不同的神经网络模型,这时候,在测试阶段,我们就需要调用多个预训练好的模型分别来进行预测. 调用单个预训练好的模型请点击此处 弄明白了如何调用单个模型,其实调 ...
- tensorflow 2.0 学习(四)
这次的mnist学习加入了测试集,看看学习的准确率,代码如下 # encoding: utf-8 import tensorflow as tf import matplotlib.pyplot as ...
- Tensorflow 2.0 学习资源
我从换了新工作才开始学习使用Tensorflow,感觉实在太难用了,sess和graph对 新手很不友好,各种API混乱不堪,这些在tf2.0都有了重大改变,2.0大量使用keras的 api,初步使 ...
- tensorflow 1.0 学习:十图详解tensorflow数据读取机制
本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...
随机推荐
- hbase参数配置和说明
版本:0.94-cdh4.2.1 hbase-site.xml配置 hbase.tmp.dir 本地文件系统tmp目录,一般配置成local模式的设置一下,但是最好还是需要设置一下,因为很多文件都会默 ...
- Qwt 编译 配置 使用
QWT,全称是Qt Widgets for Technical Applications,是一个基于LGPL版权协议的开源项目,可生成各种统计图.它为具有技术专业背景的程序提供GUI组件和一组实用类, ...
- css实现图片等比例缩放
<div class="box"> <img src="01.jpg"/> </div> .box{ } //只要给图片设置 ...
- 关机,重启BAT命令
关机命令shutdown -s -t 重启命令 shutdown -r -t
- Run Keyword And Ignore Error,Run Keyword And Return Status,Run Keyword And Continue On Failure,Run Keyword And Expect Error,Wait Until Keyword Succeeds用法
*** Test Cases ***case1 #即使错误也继续执行,也不记录失败,且可以返回执行状态和错误信息 ${Run Keyword And Ignore Error status} ${st ...
- 2018-2019-2 网络对抗技术 20162329 Exp4 恶意代码分析
目录 Exp4 恶意代码分析 一.基础问题 问题1: 问题2: 二.系统监控 1. 系统命令监控 2. 使用Windows系统工具集sysmon监控系统状态 三.恶意软件分析 1. virustota ...
- Android的自定义View及View的绘制流程
目标:实现Android中的自定义View,为理清楚Android中的View绘制流程“铺路”. 想法很简单:从一个简单例子着手开始编写自定义View,对ViewGroup.View类中与绘制View ...
- python学习:continue及break使用
continue及break使用 #continue 作用:结束本次循环,继续下次循环#break 作用:跳出整个当次循环 for i in range(10): if i < 5: conti ...
- ORM框架之SQLAchemy
SQLAchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,即:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果. 1.安装 ...
- window10 Docker仓库访问
window10 Docker仓库访问 docer官网 docker仓库 windown10 安装docker可以参考 window10安装docker 配置了加速器以后还访问不了,点击托盘处dock ...