CF923E Perpetual Subtraction
生成函数好题!
搬一手铃悬的题解(侵删)
现在只需要考虑怎么求出g和逆变换即可,其实也就是对函数F(x)求F(x+1)和F(x-1)。
直接二项式定理展开发现是个卷积的形式,大力NTT即可。
#include<bits/stdc++.h>
#define N 440000
#define eps 1e-7
#define inf 1e9+7
#define db double
#define ll long long
#define ldb long double
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const int d=3,mo=998244353;
int ksm(int x,int k)
{
int ans=1;
while(k)
{
if(k&1)ans=1ll*ans*x%mo;
k>>=1;x=1ll*x*x%mo;
}
return ans;
}
int rev[N];
void ntt(int *f,int n,int flag)
{
for(int i=0;i<n;i++)
{
rev[i]=(rev[i>>1]>>1)+(i&1)*(n>>1);
if(i<rev[i])swap(f[i],f[rev[i]]);
}
for(int k=2,kk=1;k<=n;k<<=1,kk<<=1)
{
int wn=ksm(d,(mo-1)/k);
if(flag==-1)wn=ksm(wn,mo-2);
for(int i=0;i<n;i+=k)
for(int j=0,w=1;j<kk;j++,w=1ll*w*wn%mo)
{
int t=1ll*w*f[i+j+kk]%mo;
f[i+j+kk]=(f[i+j]-t)%mo;
f[i+j]=(f[i+j]+t)%mo;
}
}
if(flag==-1)
{
int k=ksm(n,mo-2);
for(int i=0;i<n;i++)f[i]=1ll*f[i]*k%mo;
}
}
int a[N],b[N];
void mul(int len)
{
ntt(a,len,+1);ntt(b,len,+1);
for(int i=0;i<len;i++)a[i]=1ll*a[i]*b[i]%mo;
ntt(a,len,-1);
}
int n,m,len,f[N],g[N],fac[N],vac[N];
int main()
{
n=read();ll t;cin>>t;m=(t%(mo-1));len=1;
while(len<2*(n+1))len<<=1;
for(int i=0;i<=n;i++)f[i]=read();
fac[0]=vac[0]=1;
for(int i=1;i<=len;i++)fac[i]=1ll*fac[i-1]*i%mo;
vac[len]=ksm(fac[len],mo-2);
for(int i=len-1;i>=1;i--)vac[i]=1ll*vac[i+1]*(i+1)%mo;
//get g(x)=f(x+1)
for(int i=0;i<=n;i++)a[i]=1ll*f[i]*fac[i]%mo,b[i]=vac[i];
for(int i=n+1;i<len;i++)a[i]=b[i]=0;
reverse(a,a+n+1);mul(len);
for(int i=0;i<=n;i++)g[i]=1ll*vac[i]*a[n-i]%mo;
//solve get g*(x)
for(int i=0;i<=n;i++)g[i]=1ll*ksm(ksm(i+1,m),mo-2)*g[i]%mo;
//get f*(x)=g(x-1)
for(int i=0;i<=n;i++)a[i]=1ll*g[i]*fac[i]%mo,b[i]=1ll*ksm(-1,i)*vac[i]%mo;
for(int i=n+1;i<len;i++)a[i]=b[i]=0;
reverse(a,a+n+1);mul(len);
for(int i=0;i<=n;i++)f[i]=1ll*vac[i]*a[n-i]%mo;
//print f(x)
for(int i=0;i<=n;i++)printf("%d ",(f[i]%mo+mo)%mo);
return 0;
}
CF923E Perpetual Subtraction的更多相关文章
- 【CF932E】Perpetual Subtraction(NTT,线性代数)
[CF932E]Perpetual Subtraction(NTT,线性代数) 题面 洛谷 CF 题解 设\(f_{i,j}\)表示\(i\)轮之后这个数恰好为\(j\)的概率. 得到转移:\(\di ...
- Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)
手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...
- Codeforces 923E - Perpetual Subtraction(微积分+生成函数+推式子+二项式反演+NTT)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经 ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- ZJOI2018游记Round1
广告 ZJOI2018Round2游记 All Falls Down 非常感谢学弟学妹们捧场游记虽然这是一篇假游记 ZJOI Round1今天正式落下帷幕.在这过去的三天里遇到了很多朋友,见识了很多有 ...
- PAT 解题报告 1050. String Subtraction (20)
1050. String Subtraction (20) Given two strings S1 and S2, S = S1 - S2 is defined to be the remainin ...
- [leetcode-592-Fraction Addition and Subtraction]
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
- [LeetCode] Fraction Addition and Subtraction 分数加减法
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
- [Swift]LeetCode592. 分数加减运算 | Fraction Addition and Subtraction
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
随机推荐
- IDEA 破解_补丁永久_2018.3
主要是Eclipse我已经玩坏了三次了,切换jdk8到jdk10,再切换到jdk8,大量文件乱码,怎么改都没用,有的时候Eclipse久了不用,项目放在里面发霉了,坏掉了,MMP,换到I ...
- [assembly: AssemblyVersion("1.0.1.*")] 指定版本字符串不符合所需格式 - major[.minor[.build[.revision]]]
报如下错误, 解决方法:打开项目文件,修改 打开项目文件修改:<Deterministic>true</Deterministic> 为:<Deterministic&g ...
- Django框架详细介绍---Form表单
一.概述 在HTML页面中,利用form表单向后端提交数据时,需要编写input等输入标签并用form标签包裹起来,与此同时,在很多应用场景之下需要对用户输入的数据校验,例如注册登录页面中,校验用户注 ...
- 论文速读(Yongchao Xu——【2018】TextField_Learning A Deep Direction Field for Irregular Scene Text)
Yongchao Xu--[2018]TextField_Learning A Deep Direction Field for Irregular Scene Text Detection 论文 Y ...
- php 防跨站表单提交
一种最优方式防跨站表单提交,用户限时token 就是生成一个随机且变换频繁加密字符串(可逆和不可逆).放在表单中,等到表单提交后检查. 这个随机字符串如果和当前用户身份相关联的话,那么攻击者伪造请求会 ...
- 使用Python的库qrcode生成二维码
现在有很多二维码的生成工具,在线的,或者安装的软件,都可以进行生成二维码.今天我用Python的qrcode库生成二维码.需要预先安装 Image 库 安装 用pip安装 # pip install ...
- nodejs基础快速上手
node 快速了解 hello node.js console.log("hello Node.js"); let http = require("http") ...
- Sublime报错
Sublime出现 unable to read project的错误对话框 每次重新开启都会弹出对话框 解决办法: 1.关闭Sublime 2.C:\Users\Administrator\AppD ...
- 终于有人把云计算、大数据和 AI 讲明白了
最近学习hadoop以及生态,顺便看到了这篇文章,总结的很到位,转载下. 我今天要讲这三个话题,一个是云计算,一个大数据,一个人工智能,我为什么要讲这三个东西呢?因为这三个东西现在非常非常的火,它们之 ...
- EF框架和Ado.Net的使用比较
1.性能上(运行效率) Ado.Net的性能更高些,直接使用SQLHelper的Command.Connection等命令通过写SQL语句对数据库进行操作.(EF的实体模型,性能上肯定要损失些!!) ...