https://www.tensorflow.org/api_docs/python/tf/contrib/layers/fully_connected

fully_connected:

1、先根据权重得到输出

2、对输出normalizer (BN..)

3、对输出activate(relu, ...)

Defined in tensorflow/contrib/layers/python/layers/layers.py.

def fully_connected(inputs,
num_outputs,
activation_fn=nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=init_ops.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None):
"""Adds a fully connected layer. `fully_connected` creates a variable called `weights`, representing a fully
connected weight matrix, which is multiplied by the `inputs` to produce a
`Tensor` of hidden units. If a `normalizer_fn` is provided (such as
`batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is
None and a `biases_initializer` is provided then a `biases` variable would be
created and added the hidden units. Finally, if `activation_fn` is not `None`,
it is applied to the hidden units as well. Note: that if `inputs` have a rank greater than 2, then `inputs` is flattened
prior to the initial matrix multiply by `weights`. Args:
inputs: A tensor of at least rank 2 and static value for the last dimension;
i.e. `[batch_size, depth]`, `[None, None, None, channels]`.
num_outputs: Integer or long, the number of output units in the layer.
activation_fn: Activation function. The default value is a ReLU function.
Explicitly set it to None to skip it and maintain a linear activation.
normalizer_fn: Normalization function to use instead of `biases`. If
`normalizer_fn` is provided then `biases_initializer` and
`biases_regularizer` are ignored and `biases` are not created nor added.
default set to None for no normalizer function
normalizer_params: Normalization function parameters.
weights_initializer: An initializer for the weights.
weights_regularizer: Optional regularizer for the weights.
biases_initializer: An initializer for the biases. If None skip biases.
biases_regularizer: Optional regularizer for the biases.
reuse: Whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.
variables_collections: Optional list of collections for all the variables or
a dictionary containing a different list of collections per variable.
outputs_collections: Collection to add the outputs.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
scope: Optional scope for variable_scope. Returns:
The tensor variable representing the result of the series of operations. Raises:
ValueError: If x has rank less than 2 or if its last dimension is not set.
"""
if not isinstance(num_outputs, six.integer_types):
raise ValueError('num_outputs should be int or long, got %s.' %
(num_outputs,)) layer_variable_getter = _build_variable_getter({
'bias': 'biases',
'kernel': 'weights'
}) with variable_scope.variable_scope(
scope,
'fully_connected', [inputs],
reuse=reuse,
custom_getter=layer_variable_getter) as sc:
inputs = ops.convert_to_tensor(inputs)
layer = core_layers.Dense(
units=num_outputs,
activation=None,
use_bias=not normalizer_fn and biases_initializer,
kernel_initializer=weights_initializer,
bias_initializer=biases_initializer,
kernel_regularizer=weights_regularizer,
bias_regularizer=biases_regularizer,
activity_regularizer=None,
trainable=trainable,
name=sc.name,
dtype=inputs.dtype.base_dtype,
_scope=sc,
_reuse=reuse)
outputs = layer.apply(inputs) # Add variables to collections.
_add_variable_to_collections(layer.kernel, variables_collections, 'weights')
if layer.bias is not None:
_add_variable_to_collections(layer.bias, variables_collections, 'biases') # Apply normalizer function / layer.
if normalizer_fn is not None:
if not normalizer_params:
normalizer_params = {}
outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None:
outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.name, outputs)

tensorflow Method源码阅读之 fully_connected的更多相关文章

  1. 【原】AFNetworking源码阅读(四)

    [原]AFNetworking源码阅读(四) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇还遗留了很多问题,包括AFURLSessionManagerTaskDe ...

  2. 【原】AFNetworking源码阅读(二)

    [原]AFNetworking源码阅读(二) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇中我们在iOS Example代码中提到了AFHTTPSessionMa ...

  3. 【原】SDWebImage源码阅读(一)

    [原]SDWebImage源码阅读(一) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 一直没有系统地读过整套源码,就感觉像一直看零碎的知识点,没有系统读过一本专业经典书 ...

  4. 源码阅读系列:EventBus

    title: 源码阅读系列:EventBus date: 2016-12-22 16:16:47 tags: 源码阅读 --- EventBus 是人们在日常开发中经常会用到的开源库,即使是不直接用的 ...

  5. EventBus源码解析 源码阅读记录

    EventBus源码阅读记录 repo地址: greenrobot/EventBus EventBus的构造 双重加锁的单例. static volatile EventBus defaultInst ...

  6. angular源码阅读,依赖注入的原理:injector,provider,module之间的关系。

    最开始使用angular的时候,总是觉得它的依赖注入方式非常神奇. 如果你跳槽的时候对新公司说,我曾经使用过angular,那他们肯定会问你angular的依赖注入原理是什么? 这篇博客其实是angu ...

  7. CI框架源码阅读笔记4 引导文件CodeIgniter.php

    到了这里,终于进入CI框架的核心了.既然是“引导”文件,那么就是对用户的请求.参数等做相应的导向,让用户请求和数据流按照正确的线路各就各位.例如,用户的请求url: http://you.host.c ...

  8. CI框架源码阅读笔记3 全局函数Common.php

    从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap ...

  9. parseInt的源码阅读

    parseInt的源码阅读 Integer.parseInt()这个方法的功能小巧又实用,实现起来困难不大,没有很复杂.这里就来看一下Java的源码是怎么写的吧,走一边大婶写过的代码,应该会有点收获吧 ...

随机推荐

  1. Centos7安装搭建NTP服务器和NTP客户端同步时间

    NTP简介: NTP是网络时间协议(Network Time Protocol),它是用来同步网络中各个计算机的时间的协议. 在计算机的世界里,时间非常地重要 例如:对于火箭发射这种科研活动,对时间的 ...

  2. SQLServer之删除约束

    使用SSMS数据库管理工具删除约束 1.连接数据库,选择数据表->展开键或者约束->选择要删除的约束->右键点击->选择删除. 2.在删除对象弹出框中->点击确定. 3. ...

  3. Nginx Mac笔记

    安装 brew install nginx 可能出现问题: Error: /usr/local is not writable. You should change the ownership and ...

  4. Jenkins插件之显示构建时间

    1.进入jenkin插件管理器中,安装  Timestamper 插件 2.安装完成后,进入到构建任务里面,在 构建环境 中勾选  Add timestamps to the Console Outp ...

  5. Flink 的Window 操作(基于flink 1.3描述)

    Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作.本文主要聚焦于在Flink中如何进行窗口操作,以及程序员如何 ...

  6. Java并发-AQS及各种Lock锁的原理

    原文 : https://blog.csdn.net/zhangdong2012/article/details/79983404

  7. windows下搭建nginx+php+laravel开发环境(转)

    1.前言 windows下大多我们都是下载使用集成环境,但是本地已经存在一个集成环境,但不适合项目的需求.因此准备再自己搭建一个环境. 2.准备 工具: 1) 下载 nginx1.14.0(版本根据自 ...

  8. koa2--delegates模块源码解读

    delegates模块是由TJ大神写的,该模块的作用是将内部对象上的变量或函数委托到外部对象上.然后我们就可以使用外部对象就能获取内部对象上的变量或函数.delegates委托方式有如下: gette ...

  9. OCR技术浅析-tesserOCR(3)

    tesserOCR使用 tesserOCR是文字识别软件(惠普公司开源) Optical Character Recognition (OCR)即光学字符辨识是把打印文本转换成一个数字表示的过程.它有 ...

  10. 安装inotify-tools监控工具

    安装inotify-tools监控工具 yum install -y inotify-tools 2:查看inotify-tools包的工具程序 [root@dns3 ~]# rpm -ql inot ...