1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).

2.  物理化学

(1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化学能 (原子在分子中的能量), 于是引进完全能 $$\bex E=e+g, \eex$$ 其中 $g$ 表示单位质量的化学能.

(2)  流体的状态方程一般与 $Z$ 有关 ($Z$ 不同, 混合气体不同), 而 $$\bex p=p(\rho,T,Z),\quad E=E(\rho,T,Z). \eex$$

3.  粘性热传导反应流体力学方程组

(1)  质量守恒方程 $$\bex \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$

(2)  动量守恒方程 $$\bex \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\otimes{\bf u})=\rho {\bf F}. \eex$$

(3)  能量守恒方程 $$\bex \cfrac{\p }{\p t}\sex{\rho E+\cfrac{1}{2}\rho u^2} +\Div\sez{ \sex{\rho E+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P}{\bf u} }=\Div(\kappa\n T)+\rho {\bf F}\cdot{\bf u}. \eex$$

(4)  未燃例题的质量守恒 $$\bex \cfrac{\p}{\p t}(\rho Z)+\Div(\rho Z{\bf u})=-\bar k(\rho,p,Z)\rho Z, \eex$$ 其中 $\bar k$ 表示反应率.

[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. Mysql共享锁、排他锁、悲观锁、乐观锁及其使用场景

    一.相关名词 |--表级锁(锁定整个表) |--页级锁(锁定一页) |--行级锁(锁定一行) |--共享锁(S锁,MyISAM 叫做读锁) |--排他锁(X锁,MyISAM 叫做写锁) |--悲观锁( ...

  2. Linux实战教学笔记49:Zabbix监控平台3.2.4(一)搭建部署与概述

    https://www.cnblogs.com/chensiqiqi/p/9162986.html 一,Zabbix架构 zabbix 是一个基于 WEB 界面的提供分布式系统监视以及网络监视功能的企 ...

  3. Spring Security(二十九):9.4.1 ExceptionTranslationFilter

    ExceptionTranslationFilter is a Spring Security filter that has responsibility for detecting any Spr ...

  4. Spring Boot JPA Entity Jackson序列化触发懒加载的解决方案

    Spring Jpa这项技术在Spring 开发中经常用到. 今天在做项目用到了Entity的关联懒加载,但是在返回Json的时候,不管关联数据有没有被加载,都会触发数据序列化,而如果关联关系没有被加 ...

  5. try.dot.net 的正确使用姿势

    [简介] 微软官方前不久发布了 try.dot.net 这个有趣的网址,开始只是图个新鲜看了一下,后面通过自身实践过后,发现这着实算是个“有趣”的站点! 首先我们大概地列举一下这个站点能给我们带来什么 ...

  6. 创建SVN源库钩子

    在源库的hooks目录下面添加post-commit.bat文件,每次代码该文件会自动执行以保证同步到备份服务器 set SVN_HOME="D:\Program Files\VisualS ...

  7. mysql varchar integer

    MySQL 中将 varchar 字段转换成数字进行排序 - MySQL - 大象笔记 https://www.sunzhongwei.com/order-by-varchar-field-which ...

  8. jmeter学习记录--08--第三方测试组件

    我们安装的JMeter版本,功能仍然有欠缺,插件是一种补充,官方提供了很多插件. 官网地址:http://www.jmeter-plugins.org/, 里面有很多可以安装到JMeter的插件,基本 ...

  9. [python]python3.7中文手册

    https://pythoncaff.com/docs/tutorial/3.7.0

  10. JMeter5.1开发TCP协议接口脚本

    最简单的方法,就是找开发给报文,直接复制到tcp取样器中,将需要变化的值做参数化就可以了.(xml报文要去掉回车换行) 下面是一个通讯头定义 通讯头56个字节(1个字符一个字节) 3 + 9 + 9 ...