[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1. 记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).
2. 物理化学
(1) 燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化学能 (原子在分子中的能量), 于是引进完全能 $$\bex E=e+g, \eex$$ 其中 $g$ 表示单位质量的化学能.
(2) 流体的状态方程一般与 $Z$ 有关 ($Z$ 不同, 混合气体不同), 而 $$\bex p=p(\rho,T,Z),\quad E=E(\rho,T,Z). \eex$$
3. 粘性热传导反应流体力学方程组
(1) 质量守恒方程 $$\bex \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$
(2) 动量守恒方程 $$\bex \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\otimes{\bf u})=\rho {\bf F}. \eex$$
(3) 能量守恒方程 $$\bex \cfrac{\p }{\p t}\sex{\rho E+\cfrac{1}{2}\rho u^2} +\Div\sez{ \sex{\rho E+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P}{\bf u} }=\Div(\kappa\n T)+\rho {\bf F}\cdot{\bf u}. \eex$$
(4) 未燃例题的质量守恒 $$\bex \cfrac{\p}{\p t}(\rho Z)+\Div(\rho Z{\bf u})=-\bar k(\rho,p,Z)\rho Z, \eex$$ 其中 $\bar k$ 表示反应率.
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- 英语口语练习系列-C05-水电
<登幽州台歌>·陈子昂 陈子昂(公元659-公元700年),唐代文学家,初唐诗文革新人物之一. Num 诗句 1 前不见古人, 2 后不见来者. 3 念天地之悠悠, 4 独怆然而涕下! T ...
- Configuring High Availability and Consistency for Apache Kafka
To achieve high availability and consistency targets, adjust the following parameters to meet your r ...
- 3.15 总结,初始java
- 使用opencv进行简单的手势检测[by Python]
代码参考于:https://github.com/rainyear/lolita/issues/8 简单的手势识别,基本思路是基于皮肤检测,皮肤的颜色在HSV颜色空间下与周围环境的区分度更高,从RGB ...
- (四)esp8266 MDNS域名服务
(实例一)ESP8266 TFT(ST7735)彩屏-web刷图 https://www.arduino.cn/thread-42247-1-1.html (实例二) 自己当AP时建立MDNS域名 h ...
- C# 对文本文件的几种读写方法总结
计算机在最初只支持ASCII编码,但是后来为了支持其他语言中的字符(比如汉字)以及一些特殊字符(比如€),就引入了Unicode字符集.基于Unicode字符集的编码方式有很多,比如UTF-7.UTF ...
- DeeplabV3+ 命令行不显示miou的解决
首先看到训练时会在命令行里输出 loss 和 total loss,那是怎么做到的呢,通过分析 train.py 源码,看到如下代码 total_loss = tf.cond( should_log, ...
- 如何展开Linux Memory Management学习?
Linux的进程和内存是两座大山,没有翻过这两座大山对于内核的理解始终是不完整的. 关于Linux内存管理,在开始之前做些准备工作. 首先bing到了Quora的<How can one rea ...
- JS 面向对象 ~ 继承的7种方式
前言: 继承 是 OO 语言中的一个最为人津津乐道的概念.许多 OO 语言都支持两种继承方式:接口继承 和 实现继承.接口继承只继承方法签名,而实现继承则继承实际的方法.如前所述,由于函数没有签名,在 ...
- string find()函数
链接 [https://www.cnblogs.com/wkfvawl/p/9429128.html]