Spark-RDD之Partition源码分析
概要
Spark RDD主要由Dependency、Partition、Partitioner组成,Partition是其中之一。一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的split逻辑)切分成n份,每份数据对应到RDD中的一个Partition,Partition的数量决定了task的数量,影响着程序的并行度,所以理解Partition是了解spark背后运行原理的第一步。
Partition定义
查看spark源码,trait Partition的定义很简单,序列号index和hashCode方法。Partition和RDD是伴生的,即每一种RDD都有其对应的Partition实现,所以,分析Partition主要是分析其子类。我们关注两个常用的子类,JdbcPartition和HadoopPartition。此外,RDD源码中有5个方法,代表其组成,如下:
第二个方法,getPartitions是数据源如何被切分的逻辑,返回值正是Partition,第一个方法compute是消费切割后的Partition的方法,所以学习Partition,要结合getPartitions和compute方法。
JdbcPartition例子
下面是Spark JdbcRDDSuite中一个例子
val sc = new SparkContext("local[1]", "test")
val rdd = new JdbcRDD(
sc,
() => { DriverManager.getConnection("jdbc:derby:target/JdbcRDDSuiteDb") },
// DATA类型为INTEGER
"SELECT DATA FROM FOO WHERE ? <= ID AND ID <= ?",
1, 100, 3,
(r: ResultSet) => { r.getInt(1) } ).count()
查看JdbcPartition实现,相比Partition,主要多了lower和upper这两个字段。
查看JdbcRDD的getPartitions,按照如上图所示算法将1到100分为3份(partition数量),结果为(1,33)、(34,66)、(67,100),封装为JdbcPartition并返回,这样数据切分的部分就完成了。
查看JdbcRDD的compute方法,逻辑清晰,将Partition强转为JdbcPartition,获取连接并预处理sql,将
例子中的”SELECT DATA FROM FOO WHERE ? <= ID AND ID <= ?”问号分别用Partition的lower和upper替换(即getPartitions切分好的(1,33)、(34,66)、(67,100))并执行查询。至此,JdbcPartition如何发挥作用就分析完了。HadoopPartition例子
举个简单例子val sc = new SparkContext("local[1]", "test")
sc.textFile("hdfs://your-file-path").count()- 1
- 2
相比Partition,HadoopPartition则多了InputSplit。
spark切分hdfs文件,调用的是Hadoop的API,对这块不熟的同学查看上面InputSplit的链接。
执行计算的逻辑也很简单,将Partition强转为HadoopPartition,HadoopPartition内有InputSplit对象。调用Hadoop API三个读取数据的相关对象,InputSplit、InputFormat和Reader,读取对应split的数据。这块需要你对Hadoop的掌握,另外我在下面会讲Hadoop split的策略。
决定partition数量的因素
Partition数量可以在初始化RDD时指定(如JdbcPartition例子),不指定的话(如HadoopPartition例子),则
读取spark.default.parallelism配置,不同类型资源管理器取值不同,如下
了解了默认的partition数量,再看一些具体API的partition行为
- RDD初始化相关
| Spark API | partition数量 |
| sc.parallelize(…) | sc.defaultParallelism |
| sc.textFile(…) | max(传参, block数) |
| val hbaseRDD = sc.newAPIHadoopRDD(…) | max(传参, block数) |
| val jdbcRDD = new JdbcRDD(…) | 传参 |
- 通用transformation
| filter(),map(),flatMap(),distinct() | 和父RDD相同 |
| rdd.union(otherRDD) | rdd.partitions.size + otherRDD. partitions.size |
| rdd.intersection(otherRDD) | max(rdd.partitions.size, otherRDD. partitions.size) |
| rdd.subtract(otherRDD) | rdd.partitions.size |
| rdd.cartesian(otherRDD) | rdd.partitions.size * otherRDD. partitions.size |
- Key-based Transformations
| reduceByKey(),foldByKey(),combineByKey(), groupByKey() | 和父RDD相同 |
| sortByKey() | 同上 |
| mapValues(),flatMapValues() | 同上 |
| cogroup(), join(), ,leftOuterJoin(), rightOuterJoin() | 所有父RDD按照其partition数降序排列,从partition数最大的RDD开始查找是否存在partitioner,存在则partition数由此partitioner确定,否则,所有RDD不存在partitioner,由spark.default.parallelism确定,若还没设置,最后partition数为所有RDD中partition数的最大值 |
上面的Partition行为我们从中挑一个细分析,就是sc.textFile(…, numPartitions)读取hdfs时的Partition数,上表给出的答案是numPartitions和block数较大者,如果不指定numPartitions,则numPartitions<=2, 分析这个问题,其实跟spark无关,要查看Hadoop源码FileInputFormat类中getSplits方法
指定numPartitions
totalSize为待处理文件总大小,numSplits就是我们所指定的numPartitions,得到了平均的文件大小goalSize,接下来
比较计算得到的goalSize和block大小blockSize,取其中较小者,再和minSize(由属性mapreduce.input.fileinputformat.split.minsize确定,默认值为0,则minSize默认值为1)取较大的。
假设待处理文件大小fSize=512M(视为一个大文件,不考虑1.1系数),block大小bSize=128M,sc.textFile(…, 3)
根据上面的公式goalSize=512M/3 > bSize=128M
取其较小者bSize,则按照bSize切分,split数=512M/128=4,即partition数=4sc.textFile(…, 5)
根据上面的公式goalSize=512M/5 < bSize=128M
取其较小者goalSize,则按照goalSize切分,split数=512M/(512M/5)=5,即partition数=5
可见指定numPartitions,小于block数时无效,大于则生效。
不指定numPartitions
默认,传给FileInputFormat类getSplits方法的numSplits值是sc.defaultParallelism和2的较小值,所以spark.default.parallelism几乎是没用的,Partition数就是block数。那么为什么是这样的呢,感兴趣的同学看下这个讨论
Partition数量影响及调整
上面分析了决定Partition数量的因数,接下来就该考虑Partition数量的影响以及合适的值。
Partition数量的影响
- Partition数量太少
太少的影响显而易见,就是资源不能充分利用,例如local模式下,有16core,但是Partition数量仅为8的话,有一半的core没利用到。 - Partition数量太多
太多,资源利用没什么问题,但是导致task过多,task的序列化和传输的时间开销增大。
那么多少的partition数是合适的呢,这里我们参考spark doc给出的建议,Typically you want 2-4 partitions for each CPU in your cluster。
- Partition数量太少
- Partition调整
- repartition
reparation是coalesce(numPartitions, shuffle = true),repartition不仅会调整Partition数,也会将Partitioner修改为hashPartitioner,产生shuffle操作。 - coalesce
coalesce函数可以控制是否shuffle,但当shuffle为false时,只能减小Partition数,无法增大。
- repartition
总结
Partition对应的是不同数据源的split逻辑,首先以JdbcPartition和HadoopPartition为例,介绍了Partition的组成,以及如何发挥作用,接下来分析了常见API的Partition行为,最后简单介绍了Partition数量的影响及调整。
参考:
https://techmagie.wordpress.com/2015/12/19/understanding-spark-partitioning/
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-partitions.html
https://spark.apache.org/docs/latest/tuning.html
https://www.mapr.com/developercentral/code/loading-hbase-tables-spark
注:图片中代码均为Spark、Hadoop源码,我稍作处理,如去掉log、metric等,使逻辑更清晰。
Spark-RDD之Partition源码分析的更多相关文章
- spark的存储系统--BlockManager源码分析
spark的存储系统--BlockManager源码分析 根据之前的一系列分析,我们对spark作业从创建到调度分发,到执行,最后结果回传driver的过程有了一个大概的了解.但是在分析源码的过程中也 ...
- Spark MLlib - Decision Tree源码分析
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...
- spark(1.1) mllib 源码分析(一)-卡方检验
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4019131.html 在spark mllib 1.1版本中增加stat包,里面包含了一些统计相关的函数 ...
- 【Spark篇】---Spark中资源和任务调度源码分析与资源配置参数应用
一.前述 Spark中资源调度是一个非常核心的模块,尤其对于我们提交参数来说,需要具体到某些配置,所以提交配置的参数于源码一一对应,掌握此节对于Spark在任务执行过程中的资源分配会更上一层楼.由于源 ...
- spark(1.1) mllib 源码分析(二)-相关系数
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4024733.html 在spark mllib 1.1版本中增加stat包,里面包含了一些统计相关的函数 ...
- spark(1.1) mllib 源码分析(三)-朴素贝叶斯
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4042467.html 本文主要以mllib 1.1版本为基础,分析朴素贝叶斯的基本原理与源码 一.基本原 ...
- Spark 1.6.1 源码分析
由于gitbook网速不好,所以复制自https://zx150842.gitbooks.io/spark-1-6-1-source-code/content/,非原创,纯属搬运工,若作者要求,可删除 ...
- spark(1.1) mllib 源码分析(三)-决策树
本文主要以mllib 1.1版本为基础,分析决策树的基本原理与源码 一.基本原理 二.源码分析 1.决策树构造 指定决策树训练数据集与策略(Strategy)通过train函数就能得到决策树模型Dec ...
- 66、Spark Streaming:数据处理原理剖析与源码分析(block与batch关系透彻解析)
一.数据处理原理剖析 每隔我们设置的batch interval 的time,就去找ReceiverTracker,将其中的,从上次划分batch的时间,到目前为止的这个batch interval ...
随机推荐
- 阿里云弹性容器实例产品 ECI ——云原生时代的基础设施
阿里云弹性容器实例产品 ECI ——云原生时代的基础设施 1. 什么是 ECI 弹性容器实例 ECI (Elastic Container Instance) 是阿里云在云原生时代为用户提供的基础计算 ...
- Asp.Net路由重写为用户名或者ID
有一个需求如下:指定某个Area的路由(Area:Wx)在其后面添加用户名或者ID作为URL参数,即像下面的样子: /Wx/xiaoming/ /Wx/xiaoming/photo /Wx/xiaom ...
- 【转载】C#中自定义Sort的排序规则IComparable接口
C#中的List集合在排序的时候,如果不使用Lambda表达式进行排序的话,一般调用Sort()方法进行排序,如果希望Sort()方法排序后的结果跟我们预想的效果一致或者按照我们自定义的规则排序,则需 ...
- Java多线程之---用 CountDownLatch 说明 AQS 的实现原理
本文基于 jdk 1.8 . CountDownLatch 的使用 前面的文章中说到了 volatile 以及用 volatile 来实现自旋锁,例如 java.util.concurrent.ato ...
- [日常] Go-逐行读取文本信息
go逐行读取文本信息:1.os包提供了操作系统函数的不依赖平台的接口,Open方法打开一个文件用于读取,func Open(name string) (file *File, err error)2. ...
- mock测试
看到群里有人说mock测试,究竟什么是mock测试呢?开始自己也没明白,查了下相关资料.还是很有必要了解哈:那么mock测试能解决什么问题?mock测试要如何做呢?今天为大家做简单介绍.mock测试就 ...
- 设计模式之解释器模式——Java语言描述
解释器模式提供了评估语言的语法或表达式的方式,它属于行为型模式.这种模式实现了一个表达式接口,该接口解释一个特定的上下文.这种模式被用在SQL解析.符号处理引擎等 介绍 意图 给定一个语言,定义它的文 ...
- 自定义工作流活动运行产生System.Security.SecurityException
摘要: 微软动态CRM专家罗勇 ,回复305或者20190224可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 最近碰到一个 ...
- SAP MM ME21N 创建PO时报错 - Net price in CNY becomes too large –
SAP MM ME21N 创建PO时报错 - Net price in CNY becomes too large – 笔者所在的项目上,由于客户尚未正式大规模量产,在现阶段,所有的物料基本都是走费用 ...
- MAC终端常用语法
这篇文章的重点不在于说是对终端语法的讲解,而是方便大家做语法备忘. 方便查找对应终端语法.所以使用了表格形式对常用终端语法进行了汇总, 但是并没有很多的讲解部分. 当然了这里记录的也都是十分基础的语法 ...