poj3373--Changing Digits(DFS+剪枝///记忆化)
题目链接:点击打开链接
题目大意:给出一个n和一个k 求m
要求1、m要和n相同的位数
要求2、m要整除k
要求3、如果1和2满足,那么m要和n有尽量少的不同位
要求4、如果1、2、3满足,要使m尽量的小
简单的一个深搜,但是直接被要求吓蒙,,,,,
要求1和2直接可以在搜索时判断,要求3可以在深搜时给出可以改变的位数(有0到len(n)),而要求4需要控制在搜索是要从小的开始搜,即从100000到999999,因为在深搜之前就控制了可以改变的次数,所以在搜索时不用担心要求3,只要使要求1要求2满足就可以,那么搜到的第一个就是最小的。
注意剪枝:
1、在每一次变化后都要直接计算出余数,当余数为0时,返回1,而不是一定要搜到最后一位。
mod[i][j] = (j*10^i)%k
2、flag[i][j]当搜到第i位余数为j时,没有找到结果的(修改位数),当以后遇到修改位数<=flag[i][j]时直接返回0。
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; char str[];
int k,len,a[];
int mod[][];
int flag[][];
void init(){
for(int j=;j<;j++)
mod[][j]=j%k;
for(int i=;i<;i++)
for(int j=;j<;j++)
mod[i][j]=mod[i-][j]*%k;
} int dfs(int num,int pos,int s){
if(s == ) return ;
if(num == || pos == -) return ;
if(num <= flag[pos][s]) return ;
int temp ;
for(int i=;i<=;i++){
if(pos == len- && i == ) continue;
if(i<a[pos]){
temp=a[pos]-i;
a[pos]=i;
if(dfs(num-,pos-,(s-mod[pos][temp]+k)%k)) return ;
a[pos]+=temp;
}
else if(i == a[pos]){
if(dfs(num,pos-,s)) return ;
}
else{
temp=i-a[pos];
a[pos]=i;
if(dfs(num-,pos-,(s+mod[pos][temp])%k)) return ;
a[pos]-=temp;
}
}
flag[pos][s]=max(flag[pos][s],num);
return ;
} int main(){
int i,j,s,temp;
while(scanf("%s %d",str,&k)!=EOF){
memset(flag,-,sizeof(flag));
len=strlen(str);
for(i=len-;i>=;i--){
a[len--i]=str[i]-'' ;
}
init();
for(i=s=temp=;i<len;i++){
s=(mod[i][a[i]]+temp)%k ;
temp=s;
}
for(i=;i<=len;i++){
if(dfs(i,len-,s)) break;
}
for(i=len-;i>=;i--)
printf("%d",a[i]);
printf("\n");
}
return ;
} /*
535064
9084
535956 19169 15724
15724 3902 153
3978
*/
代码快来拿
poj3373--Changing Digits(DFS+剪枝///记忆化)的更多相关文章
- poj 1088 动态规划+dfs(记忆化搜索)
滑雪 Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Description Mi ...
- 从DFS到记忆化DFS到动态规划
什么是动态规划? 动态规划(Dynamic Programming)是通过组合子问题的解来解决问题的.动态规划是用于求解包含重叠子问题的最优化问题的方法.其基本思想是,将原问题分解为相似的子问题.在求 ...
- poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)
http://poj.org/problem?id=3373 Changing Digits Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- 最大联通子数组之和(dfs,记忆化搜索,状态压缩)
最大联通子数组,这次的题目,我采用的方法为dfs搜索,按照已经取到的数v[][],来进行搜索过程的状态转移,每次对v[][]中标记为1的所有元素依次取其相邻的未被标记为1的元素,将其标记为1,然而,这 ...
- poj 1088 滑雪 DP(dfs的记忆化搜索)
题目地址:http://poj.org/problem?id=1088 题目大意:给你一个m*n的矩阵 如果其中一个点高于另一个点 那么就可以从高点向下滑 直到没有可以下滑的时候 就得到一条下滑路径 ...
- Codeforces 374 C. Travelling Salesman and Special Numbers (dfs、记忆化搜索)
题目链接:Travelling Salesman and Special Numbers 题意: 给了一个n×m的图,图里面有'N','I','M','A'四种字符.问图中能构成NIMA这种序列最大个 ...
- Java实现 LeetCode 813 最大平均值和的分组 (DFS+DP记忆化搜索)
813. 最大平均值和的分组 我们将给定的数组 A 分成 K 个相邻的非空子数组 ,我们的分数由每个子数组内的平均值的总和构成.计算我们所能得到的最大分数是多少. 注意我们必须使用 A 数组中的每一个 ...
- kuangbin专题十二 HDU1078 FatMouse and Cheese )(dp + dfs 记忆化搜索)
FatMouse and Cheese Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- NYOJ skiing(DFS+记忆化搜索)
skiing 时间限制:3000 ms | 内存限制: ...
随机推荐
- Python开发实战PDF
Python开发实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1iP9VmwuzDMfdZTfpupR3CA 提取码:a523 复制这段内容后打开百度网盘手机A ...
- AJAX-快速上手(四个步骤)
## 1, ajax ajax是使用js进行在不重新加载页面的情况下,使得页面局部刷新.而传统的页面加载即需要,重新加载整个页面.它的加载是异步进行的,即在加载的同时,页面的其他部分可以正常使用,不会 ...
- laravel之ORM增删改查数据
1.首先在控制器中添加方法,然后添加路由,接着在模型中操作: 以下是模型 2.以下是控制器中的操作 一下是通过ORM进行更新 删除数据
- Servlet 文件上传
Servlet 可以与 HTML form 标签一起使用,来允许用户上传文件到服务器.上传的文件可以是文本文件或图像文件或任何文档. 本文使用到的文件有: 创建一个文件上传表单 下面的 HTML 代码 ...
- 2019.3.23 python的unittest框架与requests
(明天学测试用例集合及输出测试报告!!!) import unittest import requests import json class Test_get(unittest.TestCase): ...
- F#周报2019年第13期
新闻 Visual Studio 2019发布会 Json2FSharp--在线类型生成器 cs2fs-online--从C#到F#的移植器 AWS Lambda layer上的.NET Core A ...
- SVN 服务器端权限管理
创建用户 点击菜单上的Users可以在右侧窗口区域中看见已经创建的用户 创建组 同样也可以修改组: 分配权限 示例一:开发人员拥有读写权限(组权限) 进入权限分配界面: 添加组或用户: 在添加页面可 ...
- Nginx(一)-windows下的安装配置
第一步 下载 官网下载地址 因为只是测试这里选择最新版本1.13.9 下载完成得到zip压缩包 解压后得到如下目录 第二步 启动nginx 注意不要直接双击nginx.exe,这样会导致修改配置后重 ...
- webpack摸索笔记
上一个链接,入门webpack看这篇文章最好:https://segmentfault.com/a/1190000006178770 1.先安装好node 2.建个项目文件 3,.window+r,打 ...
- 虚拟机中linux系统的安装教程
虚拟机是什么? 虚拟机(Virtual Machine)是指一种特殊的软件,可以在计算机和用户之间创建一种环境,用户可以用这个软件所创建的环境来操作.虚拟机就像像真实机器一样运行程序,满足用户的需求. ...