n 个骰子的点数
把 n 个骰子仍在地上,求点数和为 s 的概率。
java:
public List<Map.Entry<Integer, Double>> dicesSum(int n) {
final int face = 6;
final int pointNum = face * n;
long[][] dp = new long[n + 1][pointNum + 1];
for (int i = 1; i <= face; i++)
dp[1][i] = 1;
for (int i = 2; i <= n; i++)
for (int j = i; j <= pointNum; j++) /* 使用 i 个骰子最小点数为 i */
for (int k = 1; k <= face && k <= j; k++)
dp[i][j] += dp[i - 1][j - k];
final double totalNum = Math.pow(6, n);
List<Map.Entry<Integer, Double>> ret = new ArrayList<>();
for (int i = n; i <= pointNum; i++)
ret.add(new AbstractMap.SimpleEntry<>(i, dp[n][i] / totalNum));
return ret;
}
n 个骰子的点数的更多相关文章
- 【编程题目】n 个骰子的点数
67.俩个闲玩娱乐(运算).2.n 个骰子的点数.把 n 个骰子扔在地上,所有骰子朝上一面的点数之和为 S.输入 n,打印出 S 的所有可能的值出现的概率. 思路:用递归把每个骰子的可能情况变量,记录 ...
- 【面试题043】n个骰子的点数
[面试题043]n个骰子的点数 题目: 把n个骰子扔在地上,所有骰子朝上一面的点数之和为s, 输入n,打印出s的所有可能的值出现的概率. n个骰子的总点数,最小为n,最大为6n,根据排列组 ...
- n个骰子的点数
把n个骰子扔在地上,所有骰子朝上的一面的点数之和为s.输入n,打印出s的所有可能的值和出现的概率. 解法一:基于递归求骰子点数. /////////////////基于递归求骰子点数///////// ...
- 【剑指offer】面试题43:n个骰子的点数
第一种思路是,每一个骰子的点数从最小到最大,如果为1-6,那么全部的骰子从最小1開始,我们如果一种从左向右的排列,右边的最低,索引从最低開始,推断和的情况. def setTo1(dices, sta ...
- N个骰子的点数和的概率分布
程序设计思路: 假设有n个骰子,关键是需要统计每个点数出现的次数.首先分析第一个骰子点数和有1到6的点数,计算出1到6的每种点数 的次数,并将结果用一个数组pos1记录.然后分析有两个骰子时, 点数为 ...
- n个骰子的点数之和
题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为S.输入n,打印出S的所有可能的值出现的概率. 解题思路:动态规划 第一步,确定问题解的表达式.可将f(n, s) 表示n个骰子点数的和为s的排列 ...
- 《剑指offer(第二版)》面试题60——n个骰子的点数
一.题目描述 把n个骰子仍在地上,所有的骰子朝上的一面的点数之和为s,输入n,打印出s所有可能的值出现的概率. 二.题解 <剑指offer>上给出的两种方法,尤其是代码,晦涩难懂且没有注释 ...
- [剑指Offer]60-n个骰子的点数
题意 输入骰子个数n,打印出所有骰子朝上的点的点数之和,及对应的概率. 题解 循环. n个骰子,点数之和在n~6n范围内.计算n个骰子扔出和为m的情况数,等于n-1个骰子扔出m-1,m-2...m-6 ...
- 【Java】 剑指offer(60) n个骰子的点数
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 把n个骰子扔在地上,所有骰子朝上一面的点数之和为s.输入n,打 ...
随机推荐
- Shell命令-线上查询及帮助之man、help
线上查询及帮助 - man.help 1.man:获取命令的帮助信息 man命令的简单介绍 man命令是Linux系统中最核心的命令之一 ,因为通过它可以查看其它Linux命令的使用信息.当然了 ,m ...
- python如何安装pip及venv管理
问题1:如何安装pip python的虚拟环境virtualenv的管理 背景: (1)python的版本很多,每个应用项目可能需要使用不同的版本,这样会导致兼容性问题: python的插件相当的丰富 ...
- Raspberry pi connect temperature and humidity to onenet (移动云平台)
工具 树莓派3 modelB 一个 dht11温湿度传感器一个 onenet平台 安装好requests库的python(一定要安装好不然代码不能正确运行,可以参考我的另一篇博文点击打开链接) 树莓 ...
- AutoMapper入门使用
AutoMapper入门使用 在应用开发的过程中,首先要了解整个系统中各个系统的组件的作用,然后了解系统的工作流(workflow),最后需要梳理一遍数据流(dataflow),而在整理数据流的过程中 ...
- BZOJ4621 Tc605(动态规划)
容易发现最终序列所有数字的相对顺序不变,一个数字可能的覆盖范围由两边第一个比它大的数决定,且若不考虑次数限制所有这样的序列都可以变换得到.对于一个序列,其需要的最少变换次数显然就是覆盖了别的位置的数的 ...
- #!/usr/bin/python3的作用 解决vscode ImportError: No module named xxxx
在 Python 脚本的第一行经常见到这样的注释: #!/usr/bin/env python3 或者 #!/usr/bin/python3 含义 在脚本中, 第一行以 #! 开头的代码, 在计算机行 ...
- Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...
- Product(欧拉函数)
原题地址 先吐槽一波:凉心出题人又卡时间又卡空间 先来化简一波柿子 \[\prod_{i=1}^{n}\prod_{j=1}^{n}\frac{lcm(i,j)}{gcd(i,j)}\] \[=\pr ...
- jvm学习笔记一(垃圾回收算法)
一:垃圾回收机制的原因 java中,当没有对象引用指向原先分配给某个对象的内存时候,该内存就成为了垃圾.JVM的一个系统级线程会自动释放该内存块.垃圾回收意味着程序不再需要的对象是"无用信息 ...
- kafka 基础知识梳理及集群环境部署记录
一.kafka基础介绍 Kafka是最初由Linkedin公司开发,是一个分布式.支持分区的(partition).多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特 ...