pandas合并数据集-【老鱼学pandas】
有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回。
合并
首先准备数据:
import pandas as pd
import numpy as np
data0 = pd.DataFrame(np.ones((3, 4))*0, columns=['a', 'b', 'c', 'd'])
data1 = pd.DataFrame(np.ones((3, 4))*1, columns=['a', 'b', 'c', 'd'])
data2 = pd.DataFrame(np.ones((3, 4))*2, columns=['a', 'b', 'c', 'd'])
print("data0:")
print(data0)
print("data1:")
print(data1)
print("data2:")
print(data2)
输出为:
data0:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
data1:
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
data2:
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
现在我们想把上面的这三个数据进行堆叠起来进行合并:
print(pd.concat([data0, data1, data2]))
输出为:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
忽略原始索引号
如果我们想要把合并后的索引值成为连续的值,则需要增加参数ignore_index=True,忽略掉原始的索引,这样就能重建出新的索引:
print(pd.concat([data0, data1, data2], ignore_index=True))
输出为:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0
横向合并
默认情况下就是堆叠起来的合并方式,如果想要在列上进行合并,则只要设置axis=1属性就可以:
print(pd.concat([data0, data1, data2], axis=1))
输出为:
a b c d a b c d a b c d
0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
1 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
联合查询
有点类似SQL中的联合查询,也分为inner、outer join
首先我们先准备一下数据:
import pandas as pd
import numpy as np
data0 = pd.DataFrame(np.ones((3, 4))*0, columns=['a', 'b', 'c', 'd'], index=[1, 2, 3])
data1 = pd.DataFrame(np.ones((3, 4))*1, columns=['b', 'c', 'd', 'e'], index=[2, 3, 4])
print("data0:")
print(data0)
print("data1:")
print(data1)
print("合并结果为:")
print(pd.concat([data0, data1]))
输出为:
data0:
a b c d
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
data1:
b c d e
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
合并结果为:
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
在默认情况下,两个数据集的合并为堆叠方式进行合并,并且如果合并后有新的列,则新列中没有的值被设置为NaN。
这种处理模式其实是设置了join='outer'的模式。
如果我们把join模式修改成'inner',将会出现什么状况呢?
print(pd.concat([data0, data1], join='inner'))
输出为:
b c d
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
这样输出的结果相当于去除了NaN的列,返回了两个数据集中都有的列数据。
join axes
根据某数轴进行合并。
例如:
print(pd.concat([data0, data1], axis=1, join_axes=[data0.index]))
输出为:
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
上面例子中根据data0的索引进行横向的合并,合并结果为只在data1中选择出跟data0相同index的值。
如果我们没有使用join_axes的话,其输出为:
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
也就是把两个数据集中相同的索引进行合并,同时添加上不相同的索引号
用append添加数据
print(data0.append(data1))
输出为:
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
开起来跟默认的pd.contact()没什么区别,只是append可以用在数据对象上。
添加一行数据
添加用pd.Series()创建的一行数据:
s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
print("一行数据为:")
print(s1)
print("合并结果为:")
print(data0.append(s1, ignore_index=True))
输出为:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0
在新增Series数据时,必须要设置ignore_index=True。
pandas合并数据集-【老鱼学pandas】的更多相关文章
- pandas合并merge-【老鱼学pandas】
本节讲述对于两个数据集按照相同列的值进行合并. 首先定义原始数据: import pandas as pd import numpy as np data0 = pd.DataFrame({'key' ...
- pandas画图-【老鱼学pandas】
本节主要讲述如何把pandas中的数据用图表的方式显示在屏幕上,有点类似在excel中显示图表. 安装matplotlib 为了能够显示图表,首先需要安装matplotlib库,安装方法如下: pip ...
- pandas设置值-【老鱼学pandas】
本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import ...
- pandas处理丢失数据-【老鱼学pandas】
假设我们的数据集中有缺失值,该如何进行处理呢? 丢弃缺失值的行或列 首先我们定义了数据集的缺失值: import pandas as pd import numpy as np dates = pd. ...
- pandas基本介绍-【老鱼学pandas】
前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号 ...
- pandas选择数据-【老鱼学pandas】
选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...
- pandas导入导出数据-【老鱼学pandas】
pandas可以读写如下格式的数据类型: 具体详见:http://pandas.pydata.org/pandas-docs/version/0.20/io.html 读取csv文件 我们准备了一个c ...
- numpy的array合并-【老鱼学numpy】
概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, ...
- 二分类问题续 - 【老鱼学tensorflow2】
前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=51 ...
随机推荐
- Python连接SQL Server数据库 - pymssql使用基础
连接数据库 pymssql连接数据库的方式和使用sqlite的方式基本相同: 使用connect创建连接对象 connect.cursor创建游标对象,SQL语句的执行基本都在游标上进行 cursor ...
- HBase轻松入门之HBase架构图解析
2018-12-13 2018-12-20 本篇文章旨在针对初学者以我本人现阶段所掌握的知识就HBase的架构图中各模块作一个概念科普.不对文章内容的“绝对.完全正确性”负责. 1.开胃小菜 关于HB ...
- 解决js复制在安卓和ios兼容问题
var clipboard = new ClipboardJS('.fr', { // target: function() { // return document.querySelector('d ...
- 收藏这些Safari快捷键,让你的Mac浏览网页更加方便
文章内容及图片来源于:知乎,如果涉及版权问题,请联系作者删除 文章收录于:风云社区(提供上千款各类mac软件的下载) Safari是Mac上的原生浏览器,功能自然很强大,现在每天在Mac上使用的最多的 ...
- DMA设计
目录 DMA设计 DMA框架 手册请看英文手册 芯片特性 请求来源 协议简述 基本时序 模式 协议 数据大小的描述 具体完整的实例时序 代码设计 驱动程序 测试程序 测试 参考链接 title: DM ...
- PHP-max_execution_time与fpm.request_terminate_timeout介绍
前段时间一位同事跟我说php脚本超时时间以fpm配置优先.经过自己测试后,其实不然,前面的观点只是在某些情况下成立. php脚本超时时间可以在php.ini的max_execution_time和fp ...
- 老是上不了 google scholar...
这段时间老是上不了 google scholar... 下载了最新的 host 也不行. 难道真是电脑有问题了? 网络有时也老是掉... 也好. 多休息休息. 人生难得几回清闲. 马上就要开学咯. 课 ...
- 使用VS的生成事件命令行指令将生成的exe,dll文件复制到指定文件夹中
VS预生成事件命令行 和 生成后事件命令行 宏说明 $(ConfigurationName) 当前项目配置的名称(例如,“Debug|Any CPU”). $(OutDir) ...
- jQuery提示组件toastr(取代alert)
给大家推荐一款jquery提示插件:toastr 它是一个可以取代alert的提示信息框,它在PC,移动设备上都有不错的UI效果. 具体使用方法如下: 1.首先在网页头站调用他需要的js和css文件. ...
- Permission denied的解决办法
在运行TensorFlow Example的mnist_dataset_intro时出现了Permission denied的问题,这一看就是权限问题. 解决的办法: $ sudo chmod -R ...