1、斐波那契数列

  斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(3)=2,F(n)=F(n-1)+F(n-2)(n>=4,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

  (1)、递归算法 (三点:  终止条件(边界),最优子结构 F(1)=1,F(2)=1, F(3)=2,F(n)=F(n-1)+F(n-2)  状态转移公式  F(n)=F(n-1)+F(n-2))

def fab(n):
# 终止条件 边界
if n <= 2:
return 1
else:
# 最优子结构 状态转移公式
return fab(n - 1) + fab(n - 2)

  (2)、优化  递归算法 会重复计算多次同一个式子 如图 相同的颜色代表了方法被传入相同的参数。所以需要记录下已经计算过得数,防止重复计算

# 记录已经计算过得 值
dict_fab = {} def fab_2(n):
# 终止条件 边界
if n <= 2:
return 1
elif dict_fab.get(n):
print('*')
return dict_fab.get(n)
else:
# 最优子结构 状态转移公式
dict_fab[n] = fab_2(n - 1) + fab_2(n - 2)
return dict_fab[n]

  (3)、动态规划

# 最终优化 动态规划  (大问题化成若干相同类型的子问题 然后一个个解决子问题)
def fab_3(n):
# 由前往后推
a = 1
b = 1
if n <= 2:
print('fab({})={}'.format(n, b))
return 1
for i in range(n - 2):
print(a, b)
a, b = b, a + b
print('fab({})={}'.format(n, b))
return b

2、盛水问题 Python解法(题目链接https://leetcode.com/problems/trapping-rain-water/description/

  (1)、暴力解法

  

def trap(height):
sum_water = 0
size = len(height)
for i in range(size):
max_left = 0
max_right = 0
for j in range(0, i + 1):
max_left = max(max_left, height[j])
for j in range(i, size):
max_right = max(max_right, height[j])
sum_water += min(max_left, max_right) - height[i]
return sum_water

  (2)、动态规划(记忆算法,记录i 位置的左右 最大数,减少for循环层级 时间复杂度 有o(n²)变为 o(n))

def trap_water_dy():
height = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
sum_water = 0
size = len(height)
max_left_lsit = [None]*size
max_left_lsit[0] = height[0]
max_right_list = [None]*size
max_right_list[-1] = height[-1] for i in range(1, size):
max_left_lsit[i] = max(height[i], max_left_lsit[i - 1]) for i in range(size-1):
max_right_list[size - 2 - i] = max(height[size - 2 - i], max_right_list[size - i - 1]) for i in range(size):
sum_water += min(max_left_lsit[i], max_right_list[i]) - height[i]
return sum_water

(3)、双指针

def trap_two_point():
height = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
left = 0
right = len(height) - 1
ans = 0
left_max = 0
right_max = 0
while left < right: # 循环数组一遍
if height[left] < height[right]: # 当左边的小于右边的 能装多少水 由左边的最高高度决定
if height[left] >= left_max:
left_max = height[left]
ans += (left_max - height[left])
left += 1
else: # 当右边小于左边时 装的水量由右边的最高高度决定
if height[right] >= right_max:
right_max = height[right]
ans += (right_max - height[right])
right -= 1
return ans

Python 实现 动态规划 /斐波那契数列的更多相关文章

  1. 算法 递归 迭代 动态规划 斐波那契数列 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  2. Python与Go斐波那契数列

    #!/usr/bin/env python # -*- coding: utf-8 -*- # 斐波那契数列 def fibonacci_sequence(num): aa = 0 b = 1 li ...

  3. python练习:斐波那契数列的递归实现

    python练习:斐波那契数列的递归实现 重难点:递归的是实现 def fib(n): if n==0 or n==1: return 1 else: return fib(n-1)+fib(n-2) ...

  4. 如何使用Python输出一个[斐波那契数列]

    如何使用Python输出一个[斐波那契数列]Fibonacci 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonac ...

  5. Python递归及斐波那契数列

    递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...

  6. Python递归函数与斐波那契数列

    定义:在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 阶乘实例 n = int(input(">>:")) def f(n): s ...

  7. python练习题-打印斐波拉契数列前n项

    打印斐波拉契数列前n项 #encoding=utf-8 def fibs(num):    result =[0,1]    for i in range(num-2):        result. ...

  8. Python练习笔记——斐波那契数列

    斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一 ...

  9. Python生成器实现斐波那契数列

    比如,斐波那契数列:1,1,2,3,5,8,13,21,34.... 用列表生成式写不出来,但是我们可以用函数把它打印出来: def fib(number): n, a, b = 0, 0, 1 wh ...

随机推荐

  1. luogu P1250 种树

    我来总结一下最常用的两种办法 1.贪心 2.差分约束 那么我们先来讲,贪心版<种树> 大家可能知道有一个题和这个类似,那个是钉钉子而这个是种树 我们可以借用钉钉子的思路来想,首先这个是让你 ...

  2. OI中卡常数技巧

    一.I/O优化 读入优化是卡常数最重要的一条! inline int read() { ,f=;char c=getchar(); ;c=getchar();} +c-';c=getchar();} ...

  3. prometheus 配置容器 cadvisor监控节点

    安装cadvisor docker run \ --volume=/:/roofs:ro \ --volume=/var/run:/var/run:rw \ --volume=/sys:/sys:ro ...

  4. Linux性能优化实战:到底应该怎样理解平均负载(02)

    一.平均负载与CPU使用率并没有直接关系 1.平均负载 单位时间内,系统处于可运行状态和不可终端状态的平均进程数也就是平均活跃进程数,它和cpu使用率并没有直接关系, 可运行状态: 正在使用的cpu或 ...

  5. ACM-ICPC 2018 沈阳赛区网络预赛 D Made In Heaven(第k短路,A*算法)

    https://nanti.jisuanke.com/t/31445 题意 能否在t时间内把第k短路走完. 分析 A*算法板子. #include <iostream> #include ...

  6. OpenStack虚拟机冷迁移与热迁移

    一.虚拟机迁移分析 openstacvk虚拟机迁移分为冷迁移和热迁移两种方式. 1.1冷迁移: 冷迁移(cold migration),也叫静态迁移.关闭电源的虚拟机进行迁移.通过冷迁移,可以选择将关 ...

  7. 第六节: 六类Calander处理六种不同的时间场景

    背景介绍及其使用 该章节主要补充介绍,在前一章四类触发器的基础上配合六大Canlander来动态删减某些时间,来满足更多的应用场景. 1. DailyCalendar:动态排除某天的某些字段. (需求 ...

  8. LaTeX技巧561:LaTeX如何让每一章带有目录?

    转自: http://blog.sina.com.cn/s/blog_5e16f1770102ds8b.html LaTeX技巧561:LaTeX如何让每一章带有目录? [问题描述] 当前章节列出该章 ...

  9. 关于缓存和 Chrome 的“新版刷新”

    在读本文前你要确保读过我的上篇文章<扼杀 304,Cache-Control: immutable>,因为本文是接着上文写的.上文说到,在现代 Web 上,“条件请求/304 响应”绝大多 ...

  10. RoIPooling

    . 代码: template <typename Dtype> void ROIPoolingLayer<Dtype>::Forward_cpu(const vector< ...