Description

As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has an array A of length n,and the ith element of A is equal to the sum of all digits of i in binary representation. For example,A[1]=1,A[3]=2,A[10]=2.

Now, Yuta wants to know the number of the pairs (i,j)(1≤i<j≤n) which satisfy A[i]>A[j].

It is too difficult for Rikka. Can you help her?

Input

The first line contains a number T(T≤10)——The number of the testcases. For each testcase, the first line contains a number n(n≤10300).

Output

For each testcase, print a single number. The answer may be very large, so you only need to print the answer modulo 998244353.

Sample Input

1 10

Sample Output

7

题意:给定一个数$n(n\leq 10^{300})$,问有多少个数对$(i , j)$,满足$1\leq i<j \leq n$且$f[i]>f[j]$,$f[x]$为$x$二进制表示下$1$的个数。

分析:(在打模拟赛时写到的题目……好像写了一种跟所有人都不一样的写法)

首先考虑一个数$x$,我们需要统计满足$1\leq i<x$且$f[i]>f[x]$的$i$的个数。考虑数位dp,将$x$转为二进制形式,从低位往高位推。假设当前在第$i$位,从第$1$位到第$i$位共有$k$个$1$:若当前位为$0$,则直接跳过进行下一位的统计;否则钦定当前要统计进答案的数字的比第$i$位高的位置与$x$相同,且第$i$位为$0$,则此时最低的第$i-1$位至少要有$k+1$个$1$,可任意选取,即需要统计进答案里的方案数为$\sum _{j=k+1}^{i-1} \binom{i-1}{j}$ ,令$s(i,j)=\sum _{d=0}^{j}\binom{i}{d}$,则公式简化为$s(i-1,i-1)-s(i-1,k)$。

现在我们需要统计总答案,且因为$n$很大,无法直接枚举。考虑将$n$转成二进制形式,共有$cnt$位,$a_{i}$为$n$在二进制下第$i$位上的数字。统计每一个$s(i-1,i-1)-s(i-1,k)$被统计进答案的贡献。若$s(i-1,i-1)-s(i-1,k)$会在数字$x$时被统计进答案里,$x$需要满足以下几个条件:1.$1\leq x\leq n$,2. $x$的第$i$位为$1$,3.$x$的前$i$位恰好有$k$个$1$。答案转化为统计满足条件的$x$的个数。

我们递推一个数组$f$,$f(i,j)$表示数值小于等于$n$最低的$i$位,且二进制下恰好含有$j$个$1$的数字的方案数。可得:

$$f(i,j)=\begin{cases}f(i-1,j)~~~~~~~~~~~~~~~~~~~~~~~(a_{i}=0)\\f(i-1,j-1)+\binom{i-1}{j}~~~(a_{i}=1)\end{cases}$$

特殊的,$f(i,0)=1(0\leq i\leq cnt)$。然后就可以数位dp出对于每一个$(i-1,k)$的组合,所有符合条件的数$x$了。

枚举当前在第$i$位,前$i-1$位总共有$k$个$1$,我们令$num=\sum _{d=i+1}^{cnt} 2^{d-(i+1)}\cdot a_{d}$,即大于第$i$位的部分的$0$到$num-1$的方案,则$s(i-1,i-1)-s(i-1,k+1)$的系数$t$计算方式如下:

$$t=\begin{cases}num\cdot \binom{i-1}{k}~~~~~~~~~~~~~~~~~~~~~~~~~(a_{i}=0)\\num\cdot \binom{i-1}{k}+f(i-1,k)~~~(a_{i}=1)\end{cases}$$

然后就可以得到最终的答案了。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=1e3+;
const int mod=;
int T,n,cnt,ans,tmp,num,now,t;
int x[N],a[N],C[N][N],s[N][N],f[N][N];
char ch[N];
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void Mod(int& a,int b){a+=b;if(a>=mod)a-=mod;}
int main()
{
for(int i=;i<=;i++)C[i][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
if(j)s[i][j]=(s[i][j-]+C[i][j])%mod;
else s[i][j]=C[i][j];
T=read();
while(T--)
{
cnt=ans=;
scanf("%s",ch+);
n=strlen(ch+);
for(int i=;i<=n;i++)x[n-i+]=ch[i]-'';
if(n==&&(x[]==||x[]==)){printf("0\n");continue;}
while(n)
{
if(x[]&)a[++cnt]=,x[]--;
else a[++cnt]=;
for(int i=n;i>=;i--)
if(x[i]&)x[i]/=,x[i-]+=;
else x[i]/=;
while(n&&x[n]==)n--;
}
memset(f,,sizeof(f));
for(int i=;i<=cnt;i++)f[i][]=;
for(int j=;j<=cnt;j++)
for(int i=j;i<=cnt;i++)
if(!a[i])Mod(f[i][j],f[i-][j]);
else
{
Mod(f[i][j],f[i-][j-]);
Mod(f[i][j],C[i-][j]);
}
for(int i=;i<=cnt;i++)
{
num=;
for(int j=cnt;j>i;j--)num=(num*+a[j])%mod;
for(int j=;j<i;j++)
{
t=1ll*num*C[i-][j]%mod;
Mod(ans,1ll*(s[i-][i-]-s[i-][j+]+mod)%mod*t%mod);
if(!a[i])continue;
Mod(ans,1ll*(s[i-][i-]-s[i-][j+]+mod)%mod*f[i-][j]%mod);
}
}
printf("%d\n",ans);
}
return ;
}

【hdu 5632】Rikka with Array的更多相关文章

  1. 【hdu 6089】Rikka with Terrorist

    题意 有一个 \(n\times m\) 的二维网格,其中有 \(k\) 个禁止点. 有 \(q\) 组询问,每组询问为给一个点,求有多少个矩形以这个点为一角且不包含禁止点. \(n,m,k,q\le ...

  2. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  3. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  4. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  5. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  6. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  7. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  8. 【hdu 1043】Eight

    [题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=1043 [题意] 会给你很多组数据; 让你输出这组数据到目标状态的具体步骤; [题解] 从12345 ...

  9. 【HDU 3068】 最长回文

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3068 [算法] Manacher算法求最长回文子串 [代码] #include<bits/s ...

随机推荐

  1. 初始数据结构(python语言)

    数据结构 概念:数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成 算法复杂度 时间复杂度 时间复杂度是同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法 ...

  2. js 页面history.back()返回上一页,ios 不重新加载ready的解决办法

    参考自 http://blog.csdn.net/hbts_901111zb/article/details/76691900 项目中,主页面有很多输入字段,当由主页跳转到子页面, 将子页面的字段 s ...

  3. css设置文字上下居中,一行文字居中,两行或多行文字同样居中。

    转:https://www.cnblogs.com/handsomeBoys/p/6599062.html HTML: <div class="book-detail-store-it ...

  4. Example of DenseCRF with non-RGB data

    本笔记本通过一个示例说明如何在非rgb数据上使用DenseCRFs.同时,它将解释基本概念并通过一个示例进行演示,因此即使您正在处理RGB数据,它也可能是有用的,不过也请查看PyDenseCRF's ...

  5. 通过C#学Proto.Actor模型》之Remote

    Proto.Actor中提供了基于tcp/ip的通迅来实现Remote,可以通过其Remot实现对Actor的调用. 先来看一个极简单片的远程调用. 码友看码: 引用NuGet包 Proto.Acto ...

  6. 《通过C#学Proto.Actor模型》之Prpos

    在第一篇Proto.Actor博文中,HelloWorld的第一行真正代码是:    var props = Actor.FromProducer(() => new HelloActor()) ...

  7. 【学习总结】GirlsInAI ML-diary day-13-Try/Except 异常处理

    [学习总结]GirlsInAI ML-diary 总 原博github链接-day13 认识异常处理 要点小结: try和except是同个等级,注意对齐和缩进 可以把try和except直接理解成另 ...

  8. angular4 数据绑定

    HTML属性绑定 1.基本Html属性绑定 <td [attr.colspan]="tableColspan">something</td> 2.css类绑 ...

  9. 修改host,上github

    操作如下: 1.http://ping.chinaz.com/ 搜索github.com 海外ip,其实能找到的就两个;然后再搜gist.github.com 海外ip,也是两个. 192.30.25 ...

  10. input按钮使用方法