贞鱼

众所周知,贞鱼是一种高智商水生动物。不过他们到了陆地上智商会减半。这不?他们遇到了大麻烦!

n只贞鱼到陆地上乘车,现在有k辆汽车可以租用。由于贞鱼们并不能在陆地上自由行走,一辆车只能载一段连续的贞鱼。

贞鱼们互相有着深深的怨念,每一对贞鱼之间有怨气值。第i只贞鱼与第j只贞鱼的怨气值记为Yij,且Yij=Yji,Yii=0。每辆车载重不限,但是每一对在同辆车中的贞鱼都会产生怨气值。

当然,超级贞鱼zzp长者希望怨气值的总和最小。不过他智商已经减半,想不出分配方案。他现在找到了你,请你帮助他分配贞鱼们,并输出最小怨气值之和ans。

1 ≤ n ≤4000 ,1 ≤ k ≤min(n , 800) , 0 ≤ Yij≤10

分析

显然每条鱼坐一辆车最优,代价为0。考虑二分一个权值,表示这辆车的价钱为C。如果C=0,就会选出n辆车,如果C=inf,就会只用一辆车。于是用这个权值逼近,直到选出刚好K辆车。此时选择的方案一定为最优解的一种方案。

DP方程:

\[F[i]=\min_{0\le j<i}\{F[j]+(s[i][i]+s[j][j]-s[i][j]*2)/2+C\}
\]

考虑题目中所给的那个两条鱼之间的代价,发现就是一个正方形数组里面在主对角线上选一个正方形求和。用二维前缀和维护即可。并且易证这个转移满足四边形不等式。

凸优化+决策单调性优化,时间复杂度\(O(n\log n\log w)\)


这个决策单调性优化有毒……换了一种维护版本才过的。并且二分后--l是什么操作……

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std; co int N=4001,INF=0x3f3f3f3f;
int n,K,s[N][N],g[N],f[N],C;
il int val(int j,int i){
return j<i?f[j]+(s[i][i]+s[j][j]-s[i][j]*2)/2+C:INF;
}
struct Q{int x,l,r;}q[N];
int L,R;
void insert(int i){
int w=-1;
while(L<=R){
if(val(i,q[R].l)<=val(q[R].x,q[R].l)) w=q[R--].l;
else{
if(val(q[R].x,q[R].r)>val(i,q[R].r)){
int l=q[R].l,r=q[R].r;
while(l<r){
int mid=l+r>>1;
if(val(i,mid)>val(q[R].x,mid)) l=mid+1;
else r=mid;
}
q[R].r=l-1,w=l;
}
break;
}
}
if(w!=-1) q[++R]=(Q){i,w,n};
}
void dp(){
L=R=0,q[0]=(Q){0,1,n};
for(int i=1;i<=n;++i){
while(L<=R&&q[L].r<i) ++L;
f[i]=val(q[L].x,i),g[i]=g[q[L].x]+1;
q[L].l=i+1;
insert(i);
}
}
int main(){
read(n),read(K);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j) s[i][j]=read<int>()+s[i][j-1]+s[i-1][j]-s[i-1][j-1];
int l=0,r=s[n][n];
while(l<r){
C=l+r>>1,dp();
if(g[n]>K) l=C+1;
else r=C;
}
C=l,dp();
printf("%d\n",f[n]-g[n]*C);
return 0;
}

BZOJ5311,CF321E 贞鱼的更多相关文章

  1. 【CF321E】+【bzoj5311】贞鱼

    决策单调性 + WQS二分 我们首先列出转移式: \(f[i]=Min(f[j]+Sum[j+1 , i])\) 首先我们考虑如果让一段区间的小鱼在一起的代价怎么预处理,我们可以对于一个上三角矩阵求个 ...

  2. 【BZOJ5311/CF321E】贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性)

    [BZOJ5311/CF321E]贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性) 题面 BZOJ CF 洛谷 辣鸡BZOJ卡常数!!!!!! 辣鸡BZOJ卡常数!!!!!! ...

  3. ROJ 1166 超级贞鱼

    1166: 超级贞鱼 Time Limit: 1 Sec  Memory Limit: 128 MB [Submit][Status] 传送门 Description 马达加斯加贞鱼是一种神奇的双脚贞 ...

  4. 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼

    目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...

  5. bzoj 4769: 超级贞鱼 -- 归并排序

    4769: 超级贞鱼 Time Limit: 1 Sec  Memory Limit: 128 MB Description 马达加斯加贞鱼是一种神奇的双脚贞鱼,它们把自己的智慧写在脚上——每只贞鱼的 ...

  6. 【BZOJ4769】超级贞鱼 归并排序求逆序对

    [BZOJ4769]超级贞鱼 Description 马达加斯加贞鱼是一种神奇的双脚贞鱼,它们把自己的智慧写在脚上——每只贞鱼的左脚和右脚上各有一个数.有一天,K只贞鱼兴致来潮,排成一列,从左到右第i ...

  7. 贞鱼传教&&贞鱼传教(数据加强版)

    http://acm.buaa.edu.cn/problem/1381/ 贞鱼传教[问题描述] 新的一年到来了,贞鱼哥决定到世界各地传授“贞教”,他想让“贞教”在2016年成为世界第四大宗教.说干就干 ...

  8. BZOJ_5311_贞鱼_决策单调性+带权二分

    BZOJ_5311_贞鱼_决策单调性+带权二分 Description 众所周知,贞鱼是一种高智商水生动物.不过他们到了陆地上智商会减半. 这不?他们遇到了大麻烦! n只贞鱼到陆地上乘车,现在有k辆汽 ...

  9. [CF321E]Ciel and Gondolas&&[BZOJ5311]贞鱼

    codeforces bzoj description 有\(n\)个人要坐\(k\)辆车.如果第\(i\)个人和第\(j\)个人同坐一辆车,就会产生\(w_{i,j}\)的代价. 求最小化代价.\( ...

随机推荐

  1. Java的数组,集合,数据结构,算法(一)

    本人的愚见,博客是自己积累对外的输出,在学习初期或自己没有多少底料的情况下,与其总结写博客不如默默去搞自己的代码,但是学到集合这一块时,数组,集合,数据结构,算法这个概念搞的我比较混淆,所以不得已写这 ...

  2. javascript Base64转码解码

    javascript 使用btoa和atob来进行Base64转码和解码 $scope.checkAddCookie = function() { var expireDate = new Date( ...

  3. vim学习纪要

    普通模式 根据屏幕行上下移动. gj gk g0 g^ g$ 移动到行首第一个非空字符 ^ 反向移动到上一单词的词尾 ge 插入模式 粘贴寄存器中内容 <C-r> 可视模式 移动光标的起始 ...

  4. Oracle启动和关闭数据库

    本机只安装一个数据库的情况下sqlplus / as sysdba启动数据库startup关闭数据库shutdown immediate

  5. Spring Boot 整合JDBCTemplate

    1. 首先配置pom.xml 1.1 dbcm2 是数据源类型,表示配置dataSource的方式 1.2 spring-boot-starter-jdbc是表示让spring boot 支持jdbc ...

  6. Mybatis Generator主要配置详解

    MyBatis 的代码生成主要配置文档[具体] <?xml version="1.0" encoding="UTF-8"?> <!DOCTYP ...

  7. python super超类方法

    super() 函数是用于调用父类(超类)的一个方法. super 是用来解决多重继承问题的,直接用类名调用父类方法在使用单继承的时候没问题,但是如果使用多继承,会涉及到查找顺序(MRO).重复调用( ...

  8. 运维shell脚本函数语法

    在fun.sh 文件里,使用函数来封装脚本内容 usege() { echo "hello world" echo "脚本怎么使用函数......"}usege ...

  9. Docker 学习新手笔记:从入门到放弃

    本文记录的是作为一个新手,从了解 Docker 是什么.Docker 技术包含哪些概念到上手使用.安装以及发布 Docker 镜像的整个过程.作者在学习过程中参阅了诸多文档和教程,在此一并感谢,与此同 ...

  10. Fescar: Fast & Easy Commit And Rollback

    Fescar is an easy-to-use, high-performance, java based, open source distributed transaction solution ...