2019-04-08 13:25:17

在实践中,很少有人从头开始训练整个卷积网络(随机初始化),因为拥有足够大小的数据集是相对罕见的。相反,通常在非常大的数据集(例如ImageNet,其包含具有1000个类别的120万个图像)上预先训练ConvNet,然后使用预训练好的ConvNet作为感兴趣的任务的参数初始化或固定特征提取器。目前主要有种种Transfer Learning方案如下:

  • 将ConvNet作为固定的特征提取器
在ImageNet上预先训练一个ConvNet,删除最后一个完全连接的层(该层的输出是ImageNet等不同任务的1000个类别分数),然后将其余的ConvNet视为新数据集的固定特征提取器。
  • 微调ConvNet
我们使用预训练网络初始化网络,而不是随机初始化,就像在imagenet 1000数据集上训练的网络一样。 其余训练看起来像往常一样。
具体来说不仅在新数据集上替换和重新训练ConvNet之上的分类器,而且还通过继续反向传播来微调预训练网络的权重。 可以微调ConvNet的所有层,或者可以保留一些早期层(由于过度拟合问题)并且仅微调网络的某些更高级别部分。 这是因为观察到ConvNet的早期特征包含更多通用特征(例如边缘检测器或颜色斑点检测器),这些特征应该对许多任务有用,但后来的ConvNet层逐渐变得更加特定于类的细节。 包含在原始数据集中。 例如,对于包含许多犬种的ImageNet,ConvNet的代表性功能的很大一部分可以用于特定于区分狗品种的特征。

迁移学习 transferlearning的更多相关文章

  1. 迁移学习-Transfer Learning

    迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层 ...

  2. 【深度学习系列】迁移学习Transfer Learning

    在前面的文章中,我们通常是拿到一个任务,譬如图像分类.识别等,搜集好数据后就开始直接用模型进行训练,但是现实情况中,由于设备的局限性.时间的紧迫性等导致我们无法从头开始训练,迭代一两百万次来收敛模型, ...

  3. TensorFlow迁移学习的识别花试验

    最近学习了TensorFlow,发现一个模型叫vgg16,然后搭建环境跑了一下,觉得十分神奇,而且准确率十分的高.又上了一节选修课,关于人工智能,老师让做一个关于人工智能的试验,于是觉得vgg16很不 ...

  4. 图像识别 | AI在医学上的应用 | 深度学习 | 迁移学习

    参考:登上<Cell>封面的AI医疗影像诊断系统:机器之心专访UCSD张康教授 Identifying Medical Diagnoses and Treatable Diseases b ...

  5. keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完美案例(五)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72982230 之前在博客<keras系列︱图像多分类训练与利用bottlenec ...

  6. Google Tensorflow 迁移学习 Inception-v3

    附上代码加数据地址 https://github.com/Liuyubao/transfer-learning ,欢迎参考. 一.Inception-V3模型 1.1 详细了解模型可参考以下论文: [ ...

  7. VGG16迁移学习实现

    VGG16迁移学习实现 本文讨论迁移学习,它是一个非常强大的深度学习技术,在不同领域有很多应用.动机很简单,可以打个比方来解释.假设想学习一种新的语言,比如西班牙语,那么从已经掌握的另一种语言(比如英 ...

  8. 迁移学习( Transfer Learning )

    在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关 ...

  9. 【迁移学习】2010-A Survey on Transfer Learning

    资源:http://www.cse.ust.hk/TL/ 简介: 一个例子: 关于照片的情感分析. 源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物 ...

随机推荐

  1. linux发展

    硬件 1946年诞生于宾夕法尼亚州,占地170平米,重量达到30吨,名字叫做ENIAC(electronic numerical integrator and calculator)主要作用是为美国国 ...

  2. c#十进制转二进制算法 和字符串反转算法

    去某软面试 面试官给个题上黑板做,写个算法 求95转2进制后1的个数. 我在黑板上敲了 static int count = 0; /// <summary> /// 获取10进制数转2进 ...

  3. 灵雀云受邀加入VMware 创新网络,共同助力企业数字化进程

        11月15日,在VMware主办的“VMware创新网络”2018高峰论坛上,VMware发布了VMware创新网络(VMwareInnovation Network,VIN)的长期发展规划和 ...

  4. [CentOS] rsync同步目录进行备份文件

    操作不难,网上一堆.这里列几个 CentOS7 参考地址: https://www.server-world.info/en/note?os=CentOS_7&p=rsync Copy fil ...

  5. Spring Cloud Gateway Ribbon 自定义负载均衡

    在微服务开发中,使用Spring Cloud Gateway做为服务的网关,网关后面启动N个业务服务.但是有这样一个需求,同一个用户的操作,有时候需要保证顺序性,如果使用默认负载均衡策略,同一个用户的 ...

  6. Conv1D、Conv2D、Conv3D

    由于计算机视觉的大红大紫,二维卷积的用处范围最广.因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用. 1. 二维卷积 图中的输入的数据维度为14×1414×14 ...

  7. php 防跨站表单提交

    一种最优方式防跨站表单提交,用户限时token 就是生成一个随机且变换频繁加密字符串(可逆和不可逆).放在表单中,等到表单提交后检查. 这个随机字符串如果和当前用户身份相关联的话,那么攻击者伪造请求会 ...

  8. 自定义域名访问本地WEB应用

    自定义域名访问本地WEB应用 本地安装了WEB服务端,怎样通过自定义域名方式实现从公网访问本地WEB应用? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动WEB服务端 默认安装的WEB ...

  9. 如何在Github创建repository

    第一步:登陆Github,点击new repository 第二步:输入相应内容创建 第三步,创建完成,如下.

  10. C#隐藏父类

    一.override和new 关键字隐藏父类的方法 正常情况下,父类virtual的方法,子类override class Animal { public virtual void EatFood() ...