题目链接:洛谷


这个公式可真是个好东西。(哪位大佬知道它叫什么名字的?)

如果$X$恒$\geq 0$,那么

$$E[X]=\int_0^{+\infty}P(X>t)dt$$

呸,我什么都没写。

如果$X\in N$,那么

$$E[X]=\sum_{i=0}^{+\infty}P(X>i)$$


根据上面的公式,我们首先看看如何计算$P(X>i)$

这个表示前$i$个数的$gcd$不为1,我们反面考虑,$gcd$为1的概率可以通过莫比乌斯反演求出,所以

$$P(X>i)=1-\sum_{d=1}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=-\sum_{d=2}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

带入上面的公式。

$$E[X]=\sum_{i=1}^{+\infty}P(x>i)+1$$

$$=1-\sum_{i=1}^{+\infty}\sum_{d=2}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=1-\sum_{d=2}^{m}\mu(d)\sum_{i=1}^{+\infty}(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=1-\sum_{d=2}^m\mu(d)\frac{\lfloor\frac{m}{d}\rfloor}{m-\lfloor\frac{m}{d}\rfloor}$$

预处理$\mu$和$inv$之后,时间复杂度$O(m)$

 #include<cstdio>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = , mod = 1e9 + ;
inline int add(int a, int b){int res = a + b; if(res >= mod) res -= mod; return res;}
inline int dec(int a, int b){int res = a - b; if(res < ) res += mod; return res;}
int n, mu[N], pri[N], tot, inv[N], ans, tmp;
bool notp[N];
int main(){
scanf("%d", &n);
inv[] = ;
for(Rint i = ;i <= n;i ++) inv[i] = (LL) (mod - mod / i) * inv[mod % i] % mod;
notp[] = notp[] = true;
mu[] = ;
for(Rint i = ;i <= n;i ++){
if(!notp[i]){mu[i] = mod - ; pri[++ tot] = i;}
for(Rint j = ;j <= tot && i * pri[j] <= n;j ++){
notp[i * pri[j]] = true;
if(i % pri[j]) mu[i * pri[j]] = mod - mu[i];
else break;
}
}
for(Rint i = ;i <= n;i ++){
tmp = n / i;
ans = add(ans, (LL) mu[i] * tmp % mod * inv[n - tmp] % mod);
}
printf("%d", dec(, ans));
}

CF1139D

CF1139D Steps to One的更多相关文章

  1. 题解-CF1139D Steps to One

    题面 CF1139D Steps to One 一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+ ...

  2. cf1139D. Steps to One(dp)

    题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...

  3. CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)

    stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...

  4. CF1139D Steps to One (莫比乌斯反演 期望dp)

    \[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...

  5. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  6. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  7. 【CF1139D】Steps to One(动态规划)

    [CF1139D]Steps to One(动态规划) 题面 CF 你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望. 题解 设\(f[ ...

  8. animation-timing-function: steps() 详解

    在应用 CSS3 渐变/动画时,有个控制时间的属性 <animation-timing-function> .它的取值中除了常用到的 贝萨尔曲线以外,还有个让人比较困惑的 steps()  ...

  9. CSS3 Animation 帧动画 steps()

    @keyframes fn{ 0%{} 100%{} } CSS3的Animation有八个属性 animation-name :动画名 fn animation-duration:时间 1s ani ...

随机推荐

  1. centos6.8_manul_install_oracle112040&manu_create_db

    --1.1上传oracle软件包及安装环境检查--redhat6.8下载链接:https://pan.baidu.com/s/1eTyw102 密码:cpfs--虚拟机使用独立磁盘时不能拍摄快照--创 ...

  2. PHP 必知的 16 个编程法则

    以双下划线(__)开头的方法称为魔术方法 -__construct():类的构造方法: -__destruct():类的析构方法: -__call($funName, $arguments):当访问未 ...

  3. (转发)Navicat 远程连接 Linux服务器上的MySQL数据库

    授权法: 在安装mysql的机器上运行: 1.# ./bin/mysql -uroot -p //这样应该可以进入MySQL服务器 2.mysql> GRANT ALL PRIVILEGES O ...

  4. python的位置参数、默认参数、关键字参数、可变参数区别

    一.位置参数 调用函数时根据函数定义的参数位置来传递参数. #!/usr/bin/env python # coding=utf-8 def print_hello(name, sex): sex_d ...

  5. 饮冰三年-人工智能-Python-20 Python线程、进程、线程

    进程:最小的数据单元 线程:最小的执行单元 一: 1:线程1 import threading #线程 import time def Music(): print("Listen Musi ...

  6. 14.并发与异步 - 3.C#5.0的异步函数 -《果壳中的c#》

    14.5.2 编写异步函数 private static readonly Stopwatch Watch = new Stopwatch(); static void Main(string[] a ...

  7. xilinx和altera的fpga的不同之处!----如果不知道,你将为之付出代价! --转载

    本人从2004年接触fpga开始,至今已经8年了.开发过altera的flex系列和cyclone3系列:开发过xilinx的vii和v5系列.下面谈谈本人对二者的一些不同,以便引起开发者对一些细节上 ...

  8. POJ 1149 PIGS 【最大流】

    <题目链接> 题目大意:有一个养猪场,厂长没有钥匙,这个养猪场一共M个猪圈,N个顾客,每个顾客有一些猪圈的钥匙,每个顾客需要一些猪,问你厂长最多能卖多少猪?这里有个条件是,厂长可以在一个顾 ...

  9. Ubuntu在终端执行命令时出现的错误

    1.在安装jdk时无意间结束了安装进程,然后就提示这个错误 E: 无法获得锁 /var/lib/dpkg/lock - open (11: 资源暂时不可用)E: 无法锁定管理目录(/var/lib/d ...

  10. Windows应用程序组成及编程步骤

    Windows应用程序组成及编程步骤: 1.应用程序的组成:一个完整的Windows应用程序通常由五种类型的文件组成 1.C语言源程序文件 2.头文件 3.模块定义文件 4.资源描述文件 5.项目文件 ...