题目链接:洛谷


这个公式可真是个好东西。(哪位大佬知道它叫什么名字的?)

如果$X$恒$\geq 0$,那么

$$E[X]=\int_0^{+\infty}P(X>t)dt$$

呸,我什么都没写。

如果$X\in N$,那么

$$E[X]=\sum_{i=0}^{+\infty}P(X>i)$$


根据上面的公式,我们首先看看如何计算$P(X>i)$

这个表示前$i$个数的$gcd$不为1,我们反面考虑,$gcd$为1的概率可以通过莫比乌斯反演求出,所以

$$P(X>i)=1-\sum_{d=1}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=-\sum_{d=2}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

带入上面的公式。

$$E[X]=\sum_{i=1}^{+\infty}P(x>i)+1$$

$$=1-\sum_{i=1}^{+\infty}\sum_{d=2}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=1-\sum_{d=2}^{m}\mu(d)\sum_{i=1}^{+\infty}(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=1-\sum_{d=2}^m\mu(d)\frac{\lfloor\frac{m}{d}\rfloor}{m-\lfloor\frac{m}{d}\rfloor}$$

预处理$\mu$和$inv$之后,时间复杂度$O(m)$

 #include<cstdio>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = , mod = 1e9 + ;
inline int add(int a, int b){int res = a + b; if(res >= mod) res -= mod; return res;}
inline int dec(int a, int b){int res = a - b; if(res < ) res += mod; return res;}
int n, mu[N], pri[N], tot, inv[N], ans, tmp;
bool notp[N];
int main(){
scanf("%d", &n);
inv[] = ;
for(Rint i = ;i <= n;i ++) inv[i] = (LL) (mod - mod / i) * inv[mod % i] % mod;
notp[] = notp[] = true;
mu[] = ;
for(Rint i = ;i <= n;i ++){
if(!notp[i]){mu[i] = mod - ; pri[++ tot] = i;}
for(Rint j = ;j <= tot && i * pri[j] <= n;j ++){
notp[i * pri[j]] = true;
if(i % pri[j]) mu[i * pri[j]] = mod - mu[i];
else break;
}
}
for(Rint i = ;i <= n;i ++){
tmp = n / i;
ans = add(ans, (LL) mu[i] * tmp % mod * inv[n - tmp] % mod);
}
printf("%d", dec(, ans));
}

CF1139D

CF1139D Steps to One的更多相关文章

  1. 题解-CF1139D Steps to One

    题面 CF1139D Steps to One 一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+ ...

  2. cf1139D. Steps to One(dp)

    题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...

  3. CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)

    stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...

  4. CF1139D Steps to One (莫比乌斯反演 期望dp)

    \[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...

  5. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  6. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  7. 【CF1139D】Steps to One(动态规划)

    [CF1139D]Steps to One(动态规划) 题面 CF 你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望. 题解 设\(f[ ...

  8. animation-timing-function: steps() 详解

    在应用 CSS3 渐变/动画时,有个控制时间的属性 <animation-timing-function> .它的取值中除了常用到的 贝萨尔曲线以外,还有个让人比较困惑的 steps()  ...

  9. CSS3 Animation 帧动画 steps()

    @keyframes fn{ 0%{} 100%{} } CSS3的Animation有八个属性 animation-name :动画名 fn animation-duration:时间 1s ani ...

随机推荐

  1. 【原创】大叔经验分享(27)linux服务器升级glibc故障恢复

    redhat6系统默认安装的glibc-2.12,有的软件依赖的是glibc-2.14,这时需要升级glibc,下载安装 http://ftp.gnu.org/gnu/glibc/glibc-2.14 ...

  2. web页面实现文件下载的几种方法

    今天碰到文件下载的一些问题,本着知其然也要知其所以然的精神,站在巨人的肩膀上深入学习和测试了一下,抛砖引玉,现在总结结论如下: 1)标准URL下载方式可以通过在web页面中嵌入 url超级链接,标准的 ...

  3. avalonjs学习笔记之实现一个简单的查询页

    官网地址:http://avalonjs.coding.me/ 因为是为了学习js,所以对样式没什么要求,先放效果图: 步骤为:初始页面-------条件查询-------编辑员工1-------保存 ...

  4. unity setactive的使用

    1.可以用本身移出布局来实现隐藏 2.RawImage的texture的设置生成的一定要及时消除,避免内存泄漏

  5. SpringMVC的入门示例---基于注解的配置

    注解版的配置,主要的修改就是将原来使用<bean>创建的业务控制器对象,修改为是扫描标签扫描到容器. 1.导入包 2.在 web.xml 配置核心控制器 <?xml version= ...

  6. 一次ES故障排查过程

    作者:莫那鲁道 原文:http://thinkinjava.cn/#blog 某天晚上,某环境 ES 出现阻塞, 运行缓慢.于是开始排查问题的过程. 开始 思路:现象是阻塞,通常是 CPU 彪高,导致 ...

  7. lxml.etree.HTML(text) 解析HTML文档

    0.参考 http://lxml.de/tutorial.html#the-xml-function There is also a corresponding function HTML() for ...

  8. matplotlib基本用法-【老鱼学matplotlib】

    本文介绍一下matplotlib的最基本用法. 这次我们要显示一个线性方程的直线. 首先要引入matplotlib库,一般是用plt这个简写的,我们就按照大多数人的惯例来进行命名: import ma ...

  9. matplotlib等高线图-【老鱼学matplotlib】

    等高线图是在地理课中讲述山峰山谷时绘制的图形,在机器学习中也会被用在绘制梯度下降算法的图形中. 因为等高线的图有三个信息:x, y以及x,y所对应的高度值. 这个高度值的计算我们用一个函数来表述: # ...

  10. Javascript 精简语法介绍

    1. 取整同时转成数值型: '10.567890'|0 结果: 10 '10.567890'^0 结果: 10 -2.23456789|0 结果: -2 ~~-2.23456789 结果: -2 2. ...