翻译 | Improving Distributional Similarity with Lessons Learned from Word Embeddings
翻译 | Improving Distributional Similarity with Lessons Learned from Word Embeddings
叶娜老师说:“读懂论文的最好方法是翻译它”。我认为这是很好的科研训练,更加适合一个陌生领域的探索。因为论文读不懂,我总结无非是因为这个领域不熟悉。如果是自己熟悉的领域,那么读起来肯定会比较顺畅。
原文
摘要
[1] Recent trends suggest that neural-network-inspired word embedding models outperform traditional count-based distributional models on word similarity and analogy detection tasks.
[2] We reveal that much of the performance gains of word embeddings are due to certain system design choices and hyper-parameter optimizations, rather than the embedding algorithms themselves.
[3] Furthermore, we show that these modifications can be transferred to traditional distributional models, yielding similar gains.
[4] In contrast to prior reports, we observe mostly local or insignificant performance differences between the methods, with no global advantage to any single approach over the others.
结论
[1] Recent embedding methods introduce a plethora of design choices beyond network architecture and optimization algorithms.
[2] We reveal that these seemingly minor variations can have a large impact on the success of word representation methods.
[3] By showing how to adapt and tune these hyper-parameters in traditional methods, we allow a proper comparison between representations, and challenge various claims of superiority from the word embedding literature.
(下启第二段)
[4] This study also exposes the need for more controlled-variable experiments, and extending the concept of “variable” from the obvious task, data, and method to the often ignored preprocessing steps and hyper-parameter settings.
[5] We also stress the need for transparent and reproducible experiments, and commend authors such as Mikolov, Pennington, and others for making their code publicly available.
[6] In this spirit, we make our code available as well.
译文
摘要
[1] 最近的趋势表明,神经网络启发的嵌入词模型在词语相似度和词语类比检测任务上优于传统的基于计数的分布式模型。
[2] 我们发现,词嵌入的性能提高很大程度上是由于特定系统设计选择和超参数优化,而不是词嵌入算法本身(带来的性能提升)。
[3] 此外,我们还表明,这些修改可以转移到传统的分布模型,从而产生类似的增益。
[4] 与之前的报告相比,我们观察到方法之间主要存在局部或微小的性能差异,与其他方法相比,没有任何整体优势。
结论
[1] 最近的嵌入方法引入了过剩的网络体系结构和优化算法之外的设计选择。
[2] 我们发现,这些看似微小的变化可能会对单词表达方法的效果产生很大的影响。
[3] 通过展示如何在传统方法中采纳以及调整这些超参数,我进行了在各种表示方法之间的适当比较,并从词嵌入文献中挑战各种主张。
[4] 这项研究还暴露了对更多可控变量实验的需求,并将“变量”的概念从明显的任务、数据和方法扩展到经常被忽略的预处理步骤和超参数设置。
[5] 我们还强调需要透明和可重复的实验,并赞扬 Mikolov,Pennington 等作者公开提供其代码。
[6] 本着这种精神,我们也提供了代码。
感悟
这篇文章是一项对比研究,旨在揭示基于神经网络的词表示学习方法所带来的效果提升,在于超参数的设置,而不是网络结构的改进。
翻译 | Improving Distributional Similarity with Lessons Learned from Word Embeddings的更多相关文章
- Lessons learned developing a practical large scale machine learning system
原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...
- Lessons learned from manually classifying CIFAR-10
Lessons learned from manually classifying CIFAR-10 Apr 27, 2011 CIFAR-10 Note, this post is from 201 ...
- Lessons Learned from Developing a Data Product
Lessons Learned from Developing a Data Product For an assignment I was asked to develop a visual ‘da ...
- Elasticsearch Mantanence Lessons Learned Today
Today I troubleshooted an Elasticsearch-cluster-down issue. Several lessons were learned: When many ...
- Lessons Learned 1(敏捷项目中的变更影响分析)
问题/现象: 业务信息流转的某些环节,会向相关人员发送通知邮件,邮件中附带有链接,供相关人员进入察看或处理业务.客户要求邮件中的链接,需要进行限制,只有特定人员才能进入处理或察看.总管想了想,应道没问 ...
- Paper Reading - Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge
Link of the Paper: https://arxiv.org/abs/1609.06647 A Correlative Paper: Show and Tell: A Neural Ima ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
随机推荐
- 对于EMC DAE、DPE、SPE、SPS的解释
对于EMC DAE.DPE.SPE.SPS的解释: DAE: Disk Array Enclosure 单一的磁盘扩展单元 CX200/CX300/CX400/CX500CX600/CX700 DPE ...
- mysql 5.7.21 解压版安装配置方法图文教程
引用:https://www.jb51.net/article/140951.htm 1.首先,你要下载MySQL解压版,下载地址,图解: 2.解压安装包,根据自己的喜好选择路径,我选择的路径是C:\ ...
- 虚拟机设置IP
方式NAT 版本信息VMware(14.1.1 build-7528167)和centos7 一,设置网络适配器: 二.设置虚拟网络 三.配置虚拟机(/etc/sysconfig/network-sc ...
- 测试自动化学习3-python3简单操作
1.列表操作 增 stu = []stus.append('lili') #在list的末尾增加一个元素 stus.insert(9,'yjk') #在指定的位置插入元素, 查 print('单个取, ...
- Express全系列教程之(九):将session上传至mysql数据库
一.简介 实际引用中,有些公司在不同地区会设置不同服务器,因此就需要用到nginx以实现负载均衡,这时,将session数据保存至数据库就成为了需要面对的问题,我们以MySQL数据库为例,看看他是如何 ...
- odoo 响应下载文件
odoo中如何实现点击按钮下载文件报告.报表到页面左下角 models.py # -*- coding: utf-8 -*-from openerp import models, fields, ap ...
- Android平台targetSdkVersion设置及动态权限
--关于Android动态权限和targetSdkVersion Android系统自6.0开始,提供动态权限机制,对于敏感权限(存储,定位,录音,拍照,录像等),需要在APP运行过程中动态向用户申请 ...
- linux系统运维命令
1.动态查看网卡流量 sar -n DEV 1 2.查看当前网卡的buffer size情况 ethtool -g eth0 3.修改当前网卡的buffer size ethtool -G eth0 ...
- Android系统裁剪:手把手教你如何进行系统裁剪
前言:android系统裁剪优化一直是各个厂商定制产品的关键步骤,包括浅层次的去除不必要的apk(android apk裁剪定制 )和深层次的裁剪整个编译系统和框架层. android作为开源系统 ...
- DS1-14
#include <stdio.h> #define MAXSIZE 10000 int MaxSubseqSum4(int List[], int N); int main() { in ...