题目

一个人写了n封不同的信及相应的n个不同的信封,他把这n封信都装错了信封,问都装错信封的装法有多少种?

解体思路

用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸。把错装的总数为记作f(n)。假设把a错装进B里了(意味着b不能装入B了),包含着这个错误的一切错装法分两类:

(1)b装入A里,这时每种错装的其余部分都与A、B、a、b 无关,应有f(n-2)种错装法。

(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的) 的信纸b、c……装入(除B外的)n-1个信封A、C……,显然这时装错的方法有f(n-1)种。

总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:

f(n)=(n-1)(f(n-1)+f(n-2))

程序代码

hdu1465

#include "stdio.h"

__int64 f(int n);
int main()
{
int n;
__int64 a;
while(scanf("%d",&n)!=EOF)
{
a = f(n);
printf("%I64d\n", a);
}
return 0;
}
__int64 f(int n)
{
if (n == 1) return 0;
if (n == 2) return 1;
if (n > 2) return (n-1)*(f(n-1)+f(n-2));
}

#include "stdio.h"

long long int f(int n);
int main()
{
int n;
long long int a;
while(scanf("%d",&n)!=EOF)
{
a = f(n);
printf("%lld\n", a);
}
return 0;
}
long long int f(int n)
{
if (n == 1) return 0;
if (n == 2) return 1;
if (n > 2) return (n-1)*(f(n-1)+f(n-2));
}

另外两种解法

#include <stdio.h>
int main()
{
int n,i,a[50];
scanf("%d",&n);
for(i=1;i<=n;i++)
{
if(i==1)
a[i]=0;
if(i==2)
a[i]=1;
else
a[i]=(i-1)*(a[i-1]+a[i-2]);
}
printf("%d\n",a[n]);
return 0;
}

#include <stdio.h>
int main()
{
int n,i,a[50];
a[1]=0;
a[2]=1;
for(i=3;i<50;i++)
a[i]=(i-1)*(a[i-1]+a[i-2]); scanf("%d",&n);
printf("%d\n",a[n]);
return 0;
}

hdu1465 动态规划的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. 震惊!几道Python 理论面试题,Python面试题No18

    本面试题题库,由公号:非本科程序员 整理发布 第1题: 简述解释型和编译型编程语言? 解释型语言编写的程序不需要编译,在执行的时候,专门有一个解释器能够将VB语言翻译成机器语言,每个语句都是执行的时候 ...

  2. Find a path HDU - 5492 (dp)

    Find a path Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. ACM模板

    #include <iostream> //万能头文件#include<bits/stdc++.h> 方便时用 #include <algorithm> #incl ...

  4. Tomcat之web.xml中的<url-pattern>标签

    关于web.xml配置中的<url-pattern> 标签<url-pattern> <url-pattern>是我们用Servlet做Web项目时需要经常配置的标 ...

  5. 1180: [CROATIAN2009]OTOCI(LCT)

    1180: [CROATIAN2009]OTOCI Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 1200  Solved: 747[Submit][ ...

  6. NopCommerce 导航菜单HTML静态处理以提高性能

    因网站要快速上线,有时候NopCommerce性能问题一直是困扰我们的最大因素,查找出来需要优化的部分代码进行修改重构是方法之一,我等非主流优化方式只为快速提高程序整体性能. 我以导航菜单为例,列出我 ...

  7. 【Remove Duplicates from Sorted Array II】cpp

    题目: Follow up for "Remove Duplicates":What if duplicates are allowed at most twice? For ex ...

  8. Leetcode 493.翻转对

    翻转对 给定一个数组 nums ,如果 i < j 且 nums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对. 你需要返回给定数组中的重要翻转对的数量. 示例 ...

  9. 拼多多2018校招编程题汇总 Python实现

    题目原址 列表补全 在商城的某个位置有一个商品列表,该列表是由L1.L2两个子列表拼接而成.当用户浏览并翻页时,需要从列表L1.L2中获取商品进行展示.展示规则如下: 用户可以进行多次翻页,用offs ...

  10. c#委托使用

    public class StepArgs : EventArgs { public int m_IMax = 0; public int m_IStep = 0; public string m_S ...