G. New Roads
                                                                   time limit per test: 2 seconds
                                                            memory limit per test:256 megabytes
                                                                      input:standard input
                                                                     output:standard output

There are n cities in Berland, each of them has a unique id — an integer from1 ton, the capital is the one with id1. Now there is a serious problem in Berland with roads — there are no roads.

That is why there was a decision to build n - 1 roads so that there will be exactly one simple path between each pair of cities.

In the construction plan t integers a1, a2, ..., at were stated, wheret equals to the distance from the capital to the most distant city, concerning new roads.ai equals the number of cities which should be at the distancei from the capital. The distance between two cities is the number of roads one has to pass on the way from one city to another.

Also, it was decided that among all the cities except the capital there should be exactlyk cities with exactly one road going from each of them. Such cities are dead-ends and can't be economically attractive. In calculation of these cities the capital is not taken into consideration regardless of the number of roads from it.

Your task is to offer a plan of road's construction which satisfies all the described conditions or to inform that it is impossible.

Input

The first line contains three positive numbers n,t andk (2 ≤ n ≤ 2·105,1 ≤ t, k < n) — the distance to the most distant city from the capital and the number of cities which should be dead-ends (the capital in this number is not taken into consideration).

The second line contains a sequence of t integersa1, a2, ..., at (1 ≤ ai < n), thei-th number is the number of cities which should be at the distancei from the capital. It is guaranteed that the sum of all the valuesai equalsn - 1.

Output

If it is impossible to built roads which satisfy all conditions, print -1.

Otherwise, in the first line print one integer n — the number of cities in Berland. In the each of the nextn - 1 line print two integers — the ids of cities that are connected by a road. Each road should be printed exactly once. You can print the roads and the cities connected by a road in any order.

If there are multiple answers, print any of them. Remember that the capital has id1.

Examples
Input
7 3 3
2 3 1
Output
7
1 3
2 1
2 6
2 4
7 4
3 5
Input
14 5 6
4 4 2 2 1
Output
14
3 1
1 4
11 6
1 2
10 13
6 10
10 12
14 12
8 4
5 1
3 7
2 6
5 9
Input
3 1 1
2
Output
-1

在构造树的时候,先把树的主链确定,再确定哪些节点为叶子节点(显然深度最大的那些点一定是叶子结点,且根节点一定不是叶子结点因为n≥2),哪些不是叶子节点。

当叶子节点数目不够时,考虑那些不一定是叶子节点的节点(即深度不是最大值并且不是树的主链的成员的节点),把他作为深度大于他们的结点的父亲即可。这样该结点就变成非叶子结点了。

当非叶子结点个数大于那些可以变成非叶子结点的个数时,无解。

 #include <bits/stdc++.h>

 using namespace std;

 #define REP(i,n)                for(int i(0); i <  (n); ++i)
#define rep(i,a,b) for(int i(a); i <= (b); ++i)
#define PB push_back const int N = + ;
vector <int> v[N];
int fa[N], a[N], n, la, leaf, cnt, l; int main(){ scanf("%d%d%d", &n, &la, &leaf);
rep(i, , la) scanf("%d", a + i);a[] = ;
if ((a[la] > leaf) || (n - la < leaf) || (n < leaf)){ puts("-1"); return ;} int sum = ; rep(i, , la) sum += a[i];
if (sum != n){ puts("-1"); return ;}
cnt = ; rep(i, , la) rep(j, , a[i]) v[i].PB(++cnt); REP(i, a[]) fa[v[][i]] = ;
rep(i, , la) fa[v[i][]] = v[i - ][];
l = n - leaf - la; rep(i, , la){
rep(j, , a[i] - ) if (l && j <= a[i - ] - ) fa[v[i][j]] = v[i - ][j], --l;
else fa[v[i][j]] = v[i - ][];
} if (l) {puts("-1"); return ;} printf("%d\n", n);
rep(i, , n) printf("%d %d\n", fa[i], i); return ; }

Codeforces 746G New Roads (构造)的更多相关文章

  1. [刷题]Codeforces 746G - New Roads

    Description There are n cities in Berland, each of them has a unique id - an integer from 1 to n, th ...

  2. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  3. New Roads CodeForces - 746G (树,构造)

    大意:构造n结点树, 高度$i$的结点有$a_i$个, 且叶子有k个. 先确定主链, 然后贪心放其余节点. #include <iostream> #include <algorit ...

  4. Codeforces 746G(构造)

                                                                                                      G. ...

  5. Codeforces Round #386 (Div. 2)G. New Roads [构造][树]

    题目链接:G. New Roads 题意:给出n个结点,t层深度,每层有a[i]个结点,总共有k个叶子结点,构造一棵树. 分析: 考虑一颗树,如果满足每层深度上有a[i]结点,最多能有多少叶子结点 那 ...

  6. 【codeforces 746G】New Roads

    [题目链接]:http://codeforces.com/problemset/problem/746/G [题意] 给你3个数字n,t,k; 分别表示一棵树有n个点; 这棵树的深度t,以及叶子节点的 ...

  7. Codeforces 362D Fools and Foolproof Roads 构造题

    题目链接:点击打开链接 题意: 给定n个点 m条边的无向图 须要在图里添加p条边 使得图最后连通分量数为q 问是否可行,不可行输出NO 可行输出YES,并输出加入的p条边. set走起.. #incl ...

  8. Codeforces 711D Directed Roads - 组合数学

    ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...

  9. Codeforces 1383D - Rearrange(构造)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不算困难的构造,花了一节英语课把它搞出来了,题解简单写写吧( 考虑从大往小加数,显然第三个条件可以被翻译为,每次加入一个元素,如果它所 ...

随机推荐

  1. mysql查询当天的数据

    mysql查询当天的数据 贴代码: #两个时间都使用to_days()函数 select * from reple where to_days(create_time) = to_days(NOW() ...

  2. C#入门篇6-4:字符串操作 string分割字符串效率比较

    //分割字符串效率比较 public static void Fund() { //1.用string.Split方法 //a.字节数组: //625毫秒/百万次 string str1 = &quo ...

  3. Java类和对象 详解(一)---写的很好通俗易懂---https://blog.csdn.net/wei_zhi/article/details/52745268

    https://blog.csdn.net/wei_zhi/article/details/52745268

  4. git+jenkins持续集成三-定时构建语法

    构建位置:选择或创建工程_设置_构建触发器 1. 定时构建语法:* * * * * (五颗星,多个时间点,中间用逗号隔开)第一个*表示分钟,取值0~59第二个*表示小时,取值0~23第三个*表示一个月 ...

  5. nyoj 题目12 喷水装置(二)

    喷水装置(二) 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的 ...

  6. Educational Codeforces Round 22 E. Army Creation(分块好题)

    E. Army Creation time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  7. [ACG001E] BBQ hard [dp]

    题面: 传送门 思路: 首先,一个暴力的想法 对于每一对pack,求出f(ai+aj,bi+bj),其中f(x,y)=(x+y)!/(x!y!),也就是x个a,y个b的排列方式个数 然后转化模型,将f ...

  8. Posix线程编程指南

    Posix线程编程指南 Posix线程编程指南... 1 一线程创建与取消... 2 线程创建... 2 1.线程与进程... 2 2. 创建线程... 2 3. 线程创建属性... 2 4. 创建的 ...

  9. [USACO15JAN]草鉴定Grass Cownoisseur (分层图,最长路,$Tarjan$)

    题目链接 Solution 水水的套路题. 可以考虑到一个环内的点是可以都到达的,所以 \(tajan\) 求出一个 \(DAG\) . 然后 \(DAG\) 上的点权值就是 \(scc\) 的大小. ...

  10. Python之时间:datetime模块

    datetime在time基础之上封装了一些方法.但是time是经常使用的,datetime中的功能,time都能实现 一.datetime的三个模块 datetime.date datetime.t ...