题目描述

Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return!

Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.

约翰到商场购物,他的钱包里有K(1 <= K <= 16)个硬币,面值的范围是1..100,000,000。

约翰想按顺序买 N个物品(1 <= N <= 100,000),第i个物品需要花费c(i)块钱,(1 <= c(i) <= 10,000)。

在依次进行的购买N个物品的过程中,约翰可以随时停下来付款,每次付款只用一个硬币,支付购买的内容是从上一次支付后开始到现在的这些所有物品(前提是该硬币足以支付这些物品的费用)。不幸的是,商场的收银机坏了,如果约翰支付的硬币面值大于所需的费用,他不会得到任何找零。

请计算出在购买完N个物品后,约翰最多剩下多少钱。如果无法完成购买,输出-1

输入输出格式

输入格式:

  • Line 1: Two integers, K and N.

  • Lines 2..1+K: Each line contains the amount of money of one of FJ's coins.

  • Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended purchases.

输出格式:

  • Line 1: The maximum amount of money FJ can end up with, or -1 if FJ cannot complete all of his purchases.

输入输出样例

输入样例#1: 复制

3 6
12
15
10
6
3
3
2
3
7
输出样例#1: 复制

12

说明

FJ has 3 coins of values 12, 15, and 10. He must make purchases in sequence of value 6, 3, 3, 2, 3, and 7.

FJ spends his 10-unit coin on the first two purchases, then the 15-unit coin on the remaining purchases. This leaves him with the 12-unit coin.

装压dp,WA了很久,少写了=号,满状态没枚举到

#include<cstdio>
#include<algorithm>
const int maxn = ;
inline int read() {
int x=, f=;
char c=getchar() ;
while(c<''||c>''){ if(c=='-')f=-;c=getchar();};
while(c<=''&&c>='')x=x*+c-'',c=getchar();
return x*f;
}int n,k;
int moe[maxn],thi[maxn*];
int dp[<<maxn];//当前状态能够购买的最多物件数
int main() {
int tot=;
k=read(),n=read();
for(int i=;i<=k;++i) moe[i]=read(),tot+=moe[i];
for(int i=;i<=n;++i) thi[i]=read(),thi[i]+=thi[i-];
int kn=(<<k)-;
//printf("%d\n",tot);
//printf("%d\n",thi[n]);
int ans=-;
for(int i=;i<=kn;++i) {
for(int j=;j<=k;++j) {
if(i&(<<j-)) {
int popo=i^(<<j-);
int l=dp[popo],r=n,tt=-;
while(l<=r) {
int mid=(l+r)>>;
if(thi[mid]-thi[dp[popo]]<=moe[j]) tt=mid,l=mid+;
else r=mid-;
}
dp[i]=std::max(dp[i],tt);
if(dp[i]==n) {
int tmp=;
for(int q=;q<=k;++q) {
if(i&(<<q-))tmp+=moe[q];
}
ans=std::max(ans,tot-tmp);
}
}
}
} printf("%d\n",ans);
return ;
}

luogu P3092 [USACO13NOV]没有找零No Change的更多相关文章

  1. Luogu P3092 [USACO13NOV]没有找零No Change【状压/二分】By cellur925

    题目传送门 可能是我退役/NOIP前做的最后一道状压... 题目大意:给你\(k\)个硬币,FJ想按顺序买\(n\)个物品,但是不能找零,问你最后最多剩下多少钱. 注意到\(k<=16\),提示 ...

  2. 洛谷P3092 [USACO13NOV]没有找零No Change

    P3092 [USACO13NOV]没有找零No Change 题目描述 Farmer John is at the market to purchase supplies for his farm. ...

  3. P3092 [USACO13NOV]没有找零No Change

    题目描述 Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 ...

  4. 洛谷 P3092 [USACO13NOV]没有找零No Change

    题目描述 Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 ...

  5. P3092 [USACO13NOV]没有找零No Change 状压dp

    这个题有点意思,其实不是特别难,但是不太好想...中间用二分找最大的可买长度就行了. 题干: 题目描述 Farmer John <= K <= ), each with value .., ...

  6. [USACO13NOV]没有找零No Change [TPLY]

    [USACO13NOV]没有找零No Change 题目链接 https://www.luogu.org/problemnew/show/3092 做题背景 FJ不是一个合格的消费者,不知法懂法用法, ...

  7. [洛谷P3092]【[USACO13NOV]没有找零No Change】

    状压\(DP\) + 二分 考虑构成:\(k<=16\)所以根据\(k\)构造状压\(dp\),将所有硬币的使用情况进行状态压缩 考虑状态:数组\(dp[i]\)表示用\(i\)状态下的硬币可以 ...

  8. 【[USACO13NOV]没有找零No Change】

    其实我是点单调队列的标签进来的,之后看着题就懵逼了 于是就去题解里一翻,发现楼上楼下的题解说的都好有道理, f[j]表示一个再使用一个硬币就能到达i的某个之前状态,b[now]表示使用那个能使状态j变 ...

  9. [luoguP3092] [USACO13NOV]没有找零No Change(状压DP + 二分)

    传送门 先通过二分预处理出来,每个硬币在每个商品处最多能往后买多少个商品 直接状压DP即可 f[i]就为,所有比状态i少一个硬币j的状态所能达到的最远距离,在加上硬币j在当前位置所能达到的距离,所有的 ...

随机推荐

  1. Tomcat之web.xml中的<url-pattern>标签

    关于web.xml配置中的<url-pattern> 标签<url-pattern> <url-pattern>是我们用Servlet做Web项目时需要经常配置的标 ...

  2. centos使用--vsftpd配置

    目录 1 在服务器配置FTP服务 1.1 在root权限下,通过如下命令安装Vsftp(以CentOS系统为例): 1.2 在启动vsftpd服务之前,需要登录云服务器修改配置文件,禁用匿名登录. 1 ...

  3. Linux之匿名FTP服务器搭建

    FTP(File Transfer Protocol)是在服务器与客户端进行文件传输的一种传输协议.本次介绍的是vsftpd的软件体验ftp服务. FTP服务器默认情况下依据用户登录情况分为三种不同的 ...

  4. 如何在win7下安装python包工具pip

    1. 在安装pip前,请确认你win系统中已经安装好了python,和easy_install工具,如果系统安装成功,easy_install在目录C:\Python27\Scripts 下面, 确认 ...

  5. [python][oldboy][函数篇][1]名称空间

    名称空间:存储名字的空间,分为三种,内置空间,全局空间,局部空间 名称可以是:变量名,函数名,类名等 当遇到一个名字时,首先在自己空间找,再到自己外的空间找 比如 test.py print f # ...

  6. java实现图的深度优先遍历和广度优先遍

    首先需要知道的是,图的深度优先遍历是一种类似于树的前序遍历方式,即选择一个入口节点,沿着这个节点一直遍历下去,直至所有节点都被访问完毕:如果说,图的深度优先遍历类似于树的前序遍历的话,那么图的广度优先 ...

  7. Jquery鼠标悬停按钮图标动态变化效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Callable、Future、FutureTask浅析

    1.Callable<V>接口 Runnable接口 public interface Runnable { public abstract void run(); } Callable ...

  9. Visual Studio调试技巧 -- Attach to Process

    本文系作者原创,但可随意转载.另:图中使用的IDE为Visual Studio 2013 RC 英文版. 一般写完代码时,我们通常会启动调试运行一下看看是否正确,启动运行的方式无非是F5-- Star ...

  10. 【01】Vue 之hello wolrd

    1.1. Vue简介 Vue是一个前端的双向绑定类的框架,发音[读音 /vjuː/, 类似于 view].新的Vue版本参考了React的部分设计,当然也有自己独特的地方,比如Vue的单文件组件开发方 ...