本文大多转载自 http://blog.csdn.net/guoyk1990/article/details/52909864,加入部分自己实战心得。

1、环境:windows 7\VS2013

2、caffe-windows准备

(1)下载官方caffe-windows并解压,将 .\windows\CommonSettings.props.example备份,并改名为CommonSettings.props。如图4所示:

图 4:修改后的CommonSettings.props文件

附带说明,现在最新版的github已经更新,没有上述文件,根据大佬说法用cmake编译后能产生sln文件,笔者不才,并不会,这里提供百度云盘的老版本:

caffe提供Windows工具包(caffe-windows):https://github.com/BVLC/caffe/tree/windows   百度云下载地址:链接:http://pan.baidu.com/s/1bp1BFH1 密码:phf3

(2)关于CommonSettings.props文件的一点说明。

  1. </pre><pre name="code" class="html"><?xml version="1.0" encoding="utf-8"?>
  2. <Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  3. <ImportGroup Label="PropertySheets" />
  4. <PropertyGroup Label="UserMacros">
  5. <BuildDir>$(SolutionDir)..\Build</BuildDir>
  6. <!--NOTE: CpuOnlyBuild and UseCuDNN flags can't be set at the same time.-->
  7. <CpuOnlyBuild>false</CpuOnlyBuild><!--注释里说的很清楚,这两个值不能同时设为true。若没有GPU就把CpuOnlyBuild设为true-->
  8. <UseCuDNN>true</UseCuDNN>
  9. <CudaVersion>7.5</CudaVersion>
  10. <!-- NOTE: If Python support is enabled, PythonDir (below) needs to be
  11. set to the root of your Python installation. If your Python installation
  12. does not contain debug libraries, debug build will not work. -->
  13. <PythonSupport>false</PythonSupport><!--设置是否支持python接口,若想支持,需要改后面的PythonDir的值-->
  14. <!-- NOTE: If Matlab support is enabled, MatlabDir (below) needs to be
  15. set to the root of your Matlab installation. -->
  16. <MatlabSupport>false</MatlabSupport><!--设置是否支持matlab接口,若想支持,需要改后面的MatlabDir的值-->
  17. <CudaDependencies></CudaDependencies>
  18. <!-- Set CUDA architecture suitable for your GPU.
  19. Setting proper architecture is important to mimize your run and compile time. -->
  20. <CudaArchitecture>compute_35,sm_35;compute_52,sm_52</CudaArchitecture>
  21. <!-- CuDNN 3 and 4 are supported -->
  22. <CuDnnPath></CuDnnPath>
  23. <ScriptsDir>$(SolutionDir)\scripts</ScriptsDir>
  24. </PropertyGroup>
  25. <PropertyGroup Condition="'$(CpuOnlyBuild)'=='false'">
  26. <CudaDependencies>cublas.lib;cuda.lib;curand.lib;cudart.lib</CudaDependencies>
  27. </PropertyGroup>
  28. <PropertyGroup Condition="'$(UseCuDNN)'=='true'">
  29. <CudaDependencies>cudnn.lib;$(CudaDependencies)</CudaDependencies>
  30. </PropertyGroup>
  31. <PropertyGroup Condition="'$(UseCuDNN)'=='true' And $(CuDnnPath)!=''">
  32. <LibraryPath>$(CuDnnPath)\cuda\lib\x64;$(LibraryPath)</LibraryPath>
  33. <IncludePath>$(CuDnnPath)\cuda\include;$(IncludePath)</IncludePath>
  34. </PropertyGroup>
  35. <PropertyGroup>
  36. <OutDir>$(BuildDir)\$(Platform)\$(Configuration)\</OutDir>
  37. <IntDir>$(BuildDir)\Int\$(ProjectName)\$(Platform)\$(Configuration)\</IntDir>
  38. </PropertyGroup>
  39. <PropertyGroup>
  40. <LibraryPath>$(OutDir);$(CUDA_PATH)\lib\$(Platform);$(LibraryPath)</LibraryPath>
  41. <IncludePath>$(SolutionDir)..\include;$(SolutionDir)..\include\caffe\proto;$(CUDA_PATH)\include;$(IncludePath)</IncludePath>
  42. </PropertyGroup>
  43. <PropertyGroup Condition="'$(PythonSupport)'=='true'"><!--与前面python接口设置对应-->
  44. <PythonDir>C:\Miniconda2\</PythonDir>
  45. <LibraryPath>$(PythonDir)\libs;$(LibraryPath)</LibraryPath>
  46. <IncludePath>$(PythonDir)\include;$(IncludePath)</IncludePath>
  47. </PropertyGroup>
  48. <PropertyGroup Condition="'$(MatlabSupport)'=='true'"><!--与前面的matlab接口设置对应-->
  49. <MatlabDir>C:\Program Files\MATLAB\R2014b</MatlabDir>
  50. <LibraryPath>$(MatlabDir)\extern\lib\win64\microsoft;$(LibraryPath)</LibraryPath>
  51. <IncludePath>$(MatlabDir)\extern\include;$(IncludePath)</IncludePath>
  52. </PropertyGroup>
  53. <ItemDefinitionGroup Condition="'$(CpuOnlyBuild)'=='true'">
  54. <ClCompile>
  55. <PreprocessorDefinitions>CPU_ONLY;%(PreprocessorDefinitions)</PreprocessorDefinitions>
  56. </ClCompile>
  57. </ItemDefinitionGroup>
  58. <ItemDefinitionGroup Condition="'$(UseCuDNN)'=='true'">
  59. <ClCompile>
  60. <PreprocessorDefinitions>USE_CUDNN;%(PreprocessorDefinitions)</PreprocessorDefinitions>
  61. </ClCompile>
  62. <CudaCompile>
  63. <Defines>USE_CUDNN</Defines>
  64. </CudaCompile>
  65. </ItemDefinitionGroup>
  66. <ItemDefinitionGroup Condition="'$(PythonSupport)'=='true'">
  67. <ClCompile>
  68. <PreprocessorDefinitions>WITH_PYTHON_LAYER;BOOST_PYTHON_STATIC_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
  69. </ClCompile>
  70. </ItemDefinitionGroup>
  71. <ItemDefinitionGroup Condition="'$(MatlabSupport)'=='true'">
  72. <ClCompile>
  73. <PreprocessorDefinitions>MATLAB_MEX_FILE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
  74. </ClCompile>
  75. </ItemDefinitionGroup>
  76. <ItemDefinitionGroup>
  77. <ClCompile>
  78. <MinimalRebuild>false</MinimalRebuild>
  79. <MultiProcessorCompilation>true</MultiProcessorCompilation>
  80. <PreprocessorDefinitions>_SCL_SECURE_NO_WARNINGS;USE_OPENCV;USE_LEVELDB;USE_LMDB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
  81. <TreatWarningAsError>true</TreatWarningAsError>
  82. </ClCompile>
  83. </ItemDefinitionGroup>
  84. <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
  85. <ClCompile>
  86. <Optimization>Full</Optimization>
  87. <PreprocessorDefinitions>NDEBUG;%(PreprocessorDefinitions)</PreprocessorDefinitions>
  88. <RuntimeLibrary>MultiThreadedDLL</RuntimeLibrary>
  89. <FunctionLevelLinking>true</FunctionLevelLinking>
  90. </ClCompile>
  91. <Link>
  92. <EnableCOMDATFolding>true</EnableCOMDATFolding>
  93. <GenerateDebugInformation>true</GenerateDebugInformation>
  94. <LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
  95. <OptimizeReferences>true</OptimizeReferences>
  96. </Link>
  97. </ItemDefinitionGroup>
  98. <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
  99. <ClCompile>
  100. <Optimization>Disabled</Optimization>
  101. <PreprocessorDefinitions>_DEBUG;%(PreprocessorDefinitions)</PreprocessorDefinitions>
  102. <RuntimeLibrary>MultiThreadedDebugDLL</RuntimeLibrary>
  103. </ClCompile>
  104. <Link>
  105. <GenerateDebugInformation>true</GenerateDebugInformation>
  106. </Link>
  107. </ItemDefinitionGroup>
  108. </Project>

3、编译caffe-windows

编译用vs2013打开.\windows\Caffe.sln 并将解决方案的配置改为release,点菜单栏上的“生成->生成解决方案”,会将整个项目全部生成,这个时间会比较长(由于官方caffe-windows 的版本使用了NuGet管理第三方开发包,所以需要在vs2013上安装NuGet,官方网站下载速度比较慢,可以在我的资源里下载)。生成成功之后的文件都在.\Build\x64\Release中。

PS:生成时可能遇到的错误:errorC2220: 警告被视为错误 - 没有生成“object”文件 (..\..\src\caffe\util\math_functions.cpp)。这个错误可参考Sunshine_in_Moon 的解决方案

4、测试

1)下载MNIST数据集,MNIST数据集包含四个文件,如表1所示:

表1:MNIST数据集及其文件解释

文件

内容

train-images-idx3-ubyte.gz

训练集图片 - 55000 张 训练图片, 5000 张 验证图片

train-labels-idx1-ubyte.gz

训练集图片对应的数字标签

t10k-images-idx3-ubyte.gz

测试集图片 - 10000 张 图片

t10k-labels-idx1-ubyte.gz

测试集图片对应的数字标签

下载完后解压得到对应的四个文件,这四个文件不能直接用于caffe的训练和测试。需要利用第4步生成的convert_mnist_data.exe把四个文件转换为caffe所支持的leveldb或lmdb文件。

2)转换 训练\测试数据

a)  中的四个文件放到 . \examples\mnist\mnist_data文件夹下。

b)  在caffe-windows安装的根目录下,新建一个convert-mnist-data-train.bat文件转换为训练数据,并在文件中添加代码:

  1. Build\x64\Release\convert_mnist_data.exe --backend=lmdbexamples\mnist\mnist_data\train-images.idx3-ubyteexamples\mnist\mnist_data\train-labels.idx1-ubyte examples\mnist\mnist_data\mnist_train_lmdb
  2. pause

其中--backend=lmdb 表示转换为lmdb格式,若要转换为leveldb将其改写为--backend=leveldb 即可。

再新建一个convert-mnist-data-test.bat转换测试数据,代码为:

  1. Build\x64\Release\convert_mnist_data.exe --backend=lmdb examples\mnist\mnist_data\t10k-images.idx3-ubyte examples\mnist\mnist_data\t10k-labels.idx1-ubyte examples\mnist\mnist_data\mnist_test_lmdb
  2. Pause

Ps:(1)convert_mnist_data.exe的命令格式为:

convert_mnist_data [FLAGS] input_image_file input_label_file output_db_file

[FLAGS]:转换的文件格式可取leveldb或lmdb,示例:--backend=leveldb

Input_image_file:输入的图片文件,示例:train-images.idx3-ubyte

input_label_file:输入的图片标签文件,示例:train-labels.idx1-ubyte

output:保存输出文件的文件夹,示例:mnist_train_lmdb

(2)如果感觉很麻烦,也可以直接下载我转换好的MNIST文件(leveldb和lmdb)。

3)运行测试

(1)将第2)步中转换好的训练\测试数据集(mnist_train_lmdb\ mnist_train_lmdb或mnist_train_leveldb\mnist_train_leveldb)文件夹放在.\examples\mnist中。

(2)在caffe-windows根目录下新建一个run.bat,文件中代码:

  1. Build\x64\Release\caffe.exe  train --solver=examples/mnist/lenet_solver.prototxt
  2. pause

保存并双击运行,如果运行成功,说明caffe配置成功了。

注意1使用leveldb或lmdb格式的数据时,需要将lenet_train_test.prototxt 文件里面的data_param-> source和data_param-> backend相对应,如图5红框所标注处。

 

图 5:lenet_train_test.prototxt文件中需要注意与训练\测试数据对应的部分

注意2将lenet_solver.prototxt 文件里面的最后一行改为solver_mode:CPU。

4)训练自己的数据

这部分可以参考下面的几个博客:

1.在caffe上跑自己的数据

2.windows下caffe训练自己的数据

reference:

官方Caffe-windows 配置与示例运行

【caffe-Windows】caffe+VS2013+Windows无GPU快速配置教程

Windows下caffe安装详解(cpu+gpu+matcaffe+pycaffe)

Windows下caffe安装详解(仅CPU)的更多相关文章

  1. windows下mongodb安装详解

    1.打开官网https://www.mongodb.com/download-center?jmp=nav#community 注:这里小伙伴们可是开启下FQ软件psiphon 3下载(不开启FQ好像 ...

  2. 【Gtk】feorda下gtk安装详解

    feorda下gtk安装详解   1.yum在线安装gtk 1)pkg-config -version查看pkg-config的版本(本机测试是0.25)    2)安装必要组建:(在root权限下) ...

  3. windows下caffe安装配置、matlab接口

    一.CommonSettings.props caffe下载后解压.源代码文件夹caffe-master,到该文件夹下的windows文件夹下,将CommonSettings.props.exampl ...

  4. windows下route命令详解(转载)

    1.具体功能        该命令用于在本地IP路由表中显示和修改条目.使用不带参数的ROUTE可以显示帮助.            2.语法详解        route [-f] [-p] [co ...

  5. Linux和Windows下ping命令详解(转:http://linux.chinaitlab.com/command/829332.html)

    一.Linux下的ping参数 用途 发送一个回送信号请求给网络主机. 语法 ping [ -d] [ -D ] [ -n ] [ -q ] [ -r] [ -v] [ \ -R ] [ -a add ...

  6. Linux和Windows下ping命令详解

    转:http://linux.chinaitlab.com/command/829332.html 一.Linux下的ping参数 用途 发送一个回送信号请求给网络主机. 语法 ping [ -d] ...

  7. IPython,让Python显得友好十倍的外套——windows XP/Win7安装详解

        前言 学习python,官方版本其实足够了.但是如果追求更好的开发体验,耐得住不厌其烦地折腾.那么我可以负责任的告诉你:IPython是我认为的唯一显著好于原版python的工具.   整理了 ...

  8. Linux系统下Nginx安装详解

    该随笔为个人原创,后期会根据项目实践实时更新,如若转载,请注明出处,方便大家获得最新博文! 注:安装Nginx需要Linux系统已经安装   openssl-fips-2.0.2.tar.gz zli ...

  9. Linux 下 Redis 安装详解

    文章来源:www.oschina.net/question/12_18065 redis作为NoSQL数据库的一种应用,响应速度和命中率上还是比较高效的.项目中需要用集中式可横向扩展的缓存框架,做了一 ...

随机推荐

  1. ios中实现对UItextField,UITextView等输入框的字数限制

    本文转载至 http://blog.sina.com.cn/s/blog_9bf272cf01013lsd.html 2011-10-05 16:48 533人阅读 评论(0) 收藏 举报 1.    ...

  2. 内存MCE错误导致暴力扩充messages日志 以及chattr记录

    由于放假,好久没登过服务器,今天登上服务器查看日志意外发现:/var/log/messages文件竟然被撑到20多个G!!!赶紧查看是什么情况,首先,20多个G的文件根本无法查看,因此,我想到了spl ...

  3. grok表达式

    grok表达式 grok其实就是封装了各种常用的正则表达式,屏蔽了直接写正则的复杂性:通过它可以提取日志内容,按照自己指定的格式输出到kibana. http://udn.yyuap.com/doc/ ...

  4. 关于gcc

    1 the architecture of gcc 2 自己编译gcc时的 --build --host --target选项的含义和用法 <1> --build 执行本次的gcc编译的主 ...

  5. stacked generalization 堆积正则化 堆积泛化 加权特征线性堆积

    https://en.wikipedia.org/wiki/Ensemble_learning Stacking Stacking (sometimes called stacked generali ...

  6. OEM7GRUB 0.4.4 2009-11-18

    windows7电脑重装系统后, 启动不了, 提示这个错误: Error: OEM7GRUB 0.4.4 2009-11-18...... 解决办法: 用PE系统进入后, 运行DiskGenius软件 ...

  7. angularJs自定义模块

    <script type="text/javascript"> var myApp = angular.module("myApp",[]); my ...

  8. Raspberry Pi3 ~ 使用eclipse进行远程调试

    为了开发方便需要在电脑上对树莓派进行远程Debug. l  在eclipse中安装交叉编译(参照开发环境搭建)    arm-linux-gnueabihf-gcc l  树莓派中检查是否安装了gdb ...

  9. uboot移植添加nfs支持

    手头6410开发板uboot(基于2011.06)其他功能包括ping和tftp都执行正常,唯独缺少nfs. 只需要在其配置文件(每个开发板文件通常名称不同,include/configs/*6410 ...

  10. 架构设计:系统间通信(34)——被神化的ESB(上)

    1.概述 从本篇文章开始,我们将花一到两篇的篇幅介绍ESB(企业服务总线)技术的基本概念,为读者们理清多个和ESB技术有关名词.我们还将在其中为读者阐述什么情况下应该使用ESB技术.接下来,为了加深读 ...