Discrete Logging

Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    B

L

 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

HinThe solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

   B

(P-1)

 == 1 (mod P)


for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m 

B-m== B(P-1-m)
(mod P) .


题解:这道题目是Baby-step giant-step的裸题吧,嗯嗯,不要忘了开long long就可以了。
 #include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstring>
#include<map>
#define ll long long
using namespace std; ll p,b,n; int ex_gcd(ll a,ll b,ll &x,ll &y)
{
if (!b){x=,y=;return a;}
else
{
int fzy=ex_gcd(b,a%b,x,y);
int t=x;x=y;
y=t-a/b*y;
return fzy;
}
}
void solve()
{
ll m=(ll)sqrt(p);
map<int,int>num;
map<int,bool>app;
app[]=,num[]=;
ll zhi=;
for (int i=;i<=m-;i++)
{
zhi=zhi*b%p;
if (!app[zhi])
{
app[zhi]=;
num[zhi]=i;
}
}
zhi=zhi*b%p;
ll x,y,nn=n;
int fzy=ex_gcd(zhi,p,x,y);
x=(x+p)%p;
for (int i=;i<=m;i++)
{
if (app[nn])
{
printf("%lld\n",i*m+num[nn]);
return;
}
else nn=nn*x%p;
}
printf("no solution\n");
}
int main()
{
while(~scanf("%d%d%d",&p,&b,&n))
solve();
}

[POJ2417]Discrete Logging(指数级同余方程)的更多相关文章

  1. POJ2417 Discrete Logging【BSGS】

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5577   Accepted: 2494 ...

  2. POJ2417 Discrete Logging

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  3. POJ2417 Discrete Logging【BSGS】(模板题)

    <题目链接> 题目大意: P是素数,然后分别给你P,B,N三个数,然你求出满足这个式子的L的最小值 : BL== N (mod P). 解题分析: 这题是bsgs算法的模板题. #incl ...

  4. poj2417 Discrete Logging BSGS裸题

    给a^x == b (mod c)求满足的最小正整数x, 用BSGS求,令m=ceil(sqrt(m)),x=im-j,那么a^(im)=ba^j%p;, 我们先枚举j求出所有的ba^j%p,1< ...

  5. POJ2417 Discrete Logging | A,C互质的bsgs算法

    题目: 给出A,B,C 求最小的x使得Ax=B  (mod C) 题解: bsgs算法的模板题 bsgs 全称:Baby-step giant-step 把这种问题的规模降低到了sqrt(n)级别 首 ...

  6. Discrete Logging(poj2417)

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5120   Accepted: 2319 ...

  7. POJ 2417 Discrete Logging (Baby-Step Giant-Step)

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2819   Accepted: 1386 ...

  8. [poj2417]Discrete Logging_BSGS

    Discrete Logging poj-2417 题目大意:求$a^x\equiv b(mod\qquad c)$ 注释:O(分块可过) 想法:介绍一种算法BSGS(Baby-Step Giant- ...

  9. 【BSGS】BZOJ3239 Discrete Logging

    3239: Discrete Logging Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 729  Solved: 485[Submit][Statu ...

随机推荐

  1. Ubuntu 下安装WPS

    1.先到wps官网上下载wps的deb包. http://www.wps.cn/product/ 2.我使用的64位的,所以得安装32位兼容包 sudo apt-get install ia32-li ...

  2. HTML5<article>元素

    HTML5<article>元素用来定义页面文档的独立内容. 实例: <article class="pageArticle"> <h2>art ...

  3. JavaScript学习整理(转载)

    JavaScript的学习整理(一) 目录: 1.换皮肤功能2.显示/隐藏(点击切换)3.显示/隐藏(onmouseover/onmouseout)4.选项卡5.全选/不选/反选(checkbox)6 ...

  4. websocket 踩坑记录

    ssh execute command error: can't connect str to butes ssh 发送下一次指令回传的是上一次指令的结果 ssh 始终停留在 root 目录内 ssh ...

  5. Codevs1081 线段树练习 2

    题目描述 Description 给你N个数,有两种操作 1:给区间[a,b]的所有数都增加X 2:询问第i个数是什么? 输入描述 Input Description 第一行一个正整数n,接下来n行n ...

  6. [BZOJ] 5415: [Noi2018]归程

    在做Kruskal求最小生成树时,假设要通过边权\(w\)的边合并子树\(x\)和\(y\),我们新建一个方点,把两个子树接到这个方点上,并将方点的点权赋为\(w\),最终形成的二叉树就是\(Krus ...

  7. Unity基础-外部导入C# Dll(汇编集)

    外部导入C# Dll(汇编集) 使用创建一个dll工程 添加依赖的dll 导入Unity中,放入Assets的任意文件夹中 使用代码生成的dll汇编集只要"use dll的名字"引 ...

  8. Inkscape基础

    What is Inkscape A program for creating vector graphics For Windows, Mac OS, and Linux Open source F ...

  9. PHP分页类代码

    今天为大家献上一段代码,这是一段php分页代码: <?php//创建分页类class Page {    private $_all_num;                           ...

  10. python爬虫基础13-selenium大全7/8-异常

    Selenium笔记(7)异常 本文集链接:https://www.jianshu.com/nb/25338984 完整文档 Exceptions that may happen in all the ...