题目描述

已知多项式方程:

a0+a1*x+a2*x^2+...+an*x^n=0
求这个方程在[1,m]内的整数解(n和m均为正整数)。

输入

第一行包含2个整数n、m,每两个整数之间用一个空格隔开。
接下来的n+1行每行包含一个整数,依次为a0,a1,a2,...,an。

输出

第一行输出方程在[1,m]内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解。

样例输入

2 10
2
-3
1

样例输出

2
1
2


题解

真心不难的数论题

首先高精度FFT肯定是不可取的,那么就必须取模。但是只有1个模数极有可能多解,所以多选几个大质数模数,如果左边的式子对所有模数取模都为0,则几乎可以判定为原方程的解。

但是这样时间复杂度为$O(nmt)$,其中t是模数个数,会TLE。

我们设$f(i,j)$表示当左面的一坨的x=i时对j取模得到的数,那么显然$f(i,j)=f(i+j,j)=f(i+2j,j)=...$。

所以我们只需要处理0~j-1的数即可,剩下的直接根据前面的推出来。

这样的时间复杂度为$O(t(np+m))$,其中p为模数大小。

所以p不能太大,但是太小也会影响答案正确性,所以取20000左右的质数最合适。

Tip1:bzoj里的1010000指的是1010000,所以a是高精度数(卡在这里无数次qaq)

Tip2:bzoj这道题加强了(加多了)数据,要数据后发现有40个点,但是时间依然是10s,所以常数卡得很死,不能使用long long,模数最好只有3个等等。

#include <cstdio>
#include <cstring>
const int tot = 3;
int prime[3] = {20029 , 22277 , 23333};
int n , m , a[1000010][3] , ok[100010] , cnt[1000010];
char str[1000010];
bool judge(int x , int p)
{
int i , sum = 0;
for(i = n ; ~i ; i -- )
sum = ((sum * x % prime[p] + a[i][p]) % prime[p] + prime[p]) % prime[p];
return !sum;
}
void read(int c)
{
scanf("%s" , str);
int i , j , flag = 1 , l = strlen(str);
if(str[0] == '-')
{
flag = -1;
for(i = 0 ; i < l ; i ++ ) str[i] = str[i + 1];
l -- ;
}
for(i = 0 ; i < tot ; i ++ )
{
int sum = 0;
for(j = 0 ; j < l ; j ++ ) sum = (sum * 10 + str[j] - '0') % prime[i];
a[c][i] = sum * flag;
}
}
int main()
{
int i , j , num = 0;
scanf("%d%d" , &n , &m);
for(i = 0 ; i <= n ; i ++ ) read(i);
for(i = 0 ; i < tot ; i ++ )
{
memset(ok , 0 , sizeof(ok));
for(j = 0 ; j < prime[i] ; j ++ )
if(judge(j , i))
ok[j] = 1;
for(j = 1 ; j <= m ; j ++ ) cnt[j] += ok[j % prime[i]];
}
for(i = 1 ; i <= m ; i ++ )
if(cnt[i] == tot)
num ++ ;
printf("%d\n" , num);
for(i = 1 ; i <= m ; i ++ )
if(cnt[i] == tot)
printf("%d\n" , i);
return 0;
}

【bzoj3751】[NOIP2014]解方程 数论的更多相关文章

  1. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  2. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

  3. BZOJ3751 NOIP2014 解方程(Hash)

    题目链接  BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...

  4. [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  5. 【秦九韶算法】【字符串哈希】bzoj3751 [NOIP2014]解方程

    在模意义下枚举m进行验证,多设置几个模数,而且小一些,利用f(x+p)%p=f(x)%p降低计算次数.UOJ AC,bzoj OLE. #include<cstdio> #include& ...

  6. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  7. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  8. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  9. luogu2312 解方程 (数论,hash)

    luogu2312 解方程 (数论,hash) 第一次外出学习讲过的题目,然后被讲课人的一番话惊呆了. 这个题,我想着当年全国只有十几个满分.....然后他又说了句我考场A这道题时,用了5个模数 确实 ...

随机推荐

  1. UI与数据分离 与 UI的演进

    解藕的好处:UI内部模块能够灵活的变化. MVC或者三层架构着重强调了数据.业务逻辑和UI的分离. (MVC中的C只是UI和业务逻辑模块间的一个中转组件,理论上应该是个轻模块.) 以前的关注的解藕技术 ...

  2. Java压缩字符串工具类

    StringCompressUtils.java package javax.utils; import java.io.ByteArrayInputStream; import java.io.By ...

  3. MySQL 外键 表的查询

    自增补充 这是查看怎么创建的表, \G示旋转90度显示表的内容 表的自增的关键是** AUTO_INCREMENT=3**,在表中添加数据后,这个会自动改变,通过alert可以改变这个默认值 mysq ...

  4. 类库日期和jsp导包

    一.日期类库 1.1. Date Date类创建一个时间,或者是创建一个与你计算机当前的时间:精确到毫秒. //实例化时间类 Date date = new Date(); 1.2.格式转换类 1.2 ...

  5. Java基础面试题: 份证号码组成规则是前4位是代表省份和地区 编写一个程序,通过身份证号码判断某人是否是武汉人以及其性别。

    package com.swift; public class ID_Where_Male_Test { public static void main(String[] args) { /* * 中 ...

  6. [转载]matlab图像处理为什么要归一化和如何归一化

    matlab图像处理为什么要归一化和如何归一化,一.为什么归一化1.   基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响.也就是转换成唯一的标准形式以抵抗仿射变 ...

  7. NOIP模拟赛 密室逃脱

    密室逃脱(maze.*) 即使czhou没有派出最强篮球阵容,机房篮球队还是暴虐了校篮球队.为了不打击校篮球队信心,czhou决定改变训练后的活动.近来,江大掌门的徒弟徒孙们纷纷事业有成,回到母校为机 ...

  8. Golang ioutil读写文件测试

    运用 ioutil.ReadFile .ioutil.WriteFile package main import ( "io/ioutil" "log" &qu ...

  9. Voyager下的Settings方法

    设置网站标题,logo,描述: 自定义setting字段,添加group为文章,key为title的字段: 添加成功: 前端页面写法: <img src="{{ Voyager::im ...

  10. OOP面向对象形式的初使化配置

    init.php里: <?php use ElemeOpenApi\Config\Config; define("BASE_DIR", dirname(__FILE__) . ...