题目

lrb有一棵树,树的每个节点有个颜色。给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量。以及

现在他想让你求出所有的sum[i]

输入格式

第一行为一个整数n,表示树节点的数量

第二行为n个整数,分别表示n个节点的颜色c[1],c[2]……c[n]

接下来n-1行,每行为两个整数x,y,表示x和y之间有一条边

输出格式

输出n行,第i行为sum[i]

输入样例

5

1 2 3 2 3

1 2

2 3

2 4

1 5

输出样例

10

9

11

9

12

提示

sum[1]=s(1,1)+s(1,2)+s(1,3)+s(1,4)+s(1,5)=1+2+3+2+2=10

sum[2]=s(2,1)+s(2,2)+s(2,3)+s(2,4)+s(2,5)=2+1+2+1+3=9

sum[3]=s(3,1)+s(3,2)+s(3,3)+s(3,4)+s(3,5)=3+2+1+2+3=11

sum[4]=s(4,1)+s(4,2)+s(4,3)+s(4,4)+s(4,5)=2+1+2+1+3=9

sum[5]=s(5,1)+s(5,2)+s(5,3)+s(5,4)+s(5,5)=2+3+3+3+1=12

对于40%的数据,n<=2000

对于100%的数据,1<=n,c[i]<=10^5

题解

明显点分治即可

对于每棵分治出来的树,考虑过根的所有路径对树内点的影响

首先单独考虑一种颜色的影响,从根节点出发到每棵子树的每个点\(u\),\(u\)节点在该颜色下会产生贡献当且仅当\(u\)到根的路径上有该颜色的节点

所以我们只要找出一个子树中所有颜色为该颜色,且其祖先中没有该颜色【也就是最高的该颜色点】,其子树所有点都会产生贡献,那么所有的对根的贡献就是所有这样点的子树大小之和

考虑对子树内的点,就减去该子树的贡献,就转化为和根类似的了

每当第一次经过一种颜色的点时,其子树内所有点经过该点必定产生该颜色的贡献,此时把该颜色的贡献改为剩余子树的大小即可

还有,根节点的颜色特殊考虑

不知讲清楚没有,仔细想想还是很明显的

不过写起来细节真的多

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
using namespace std;
const int maxn = 100005,maxm = 200005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int n,c[maxn],F[maxn],N,Siz[maxn],rt,vis[maxn],fa[maxn];
int id[maxn],st[maxn],top,Vis[maxn],now,tot,tots;
LL D[maxn],Sum[maxn],sum[maxn],Sumt[maxn],ttt;
void getrt(int u){
Siz[u] = 1; F[u] = 0;
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]){
fa[to] = u; getrt(to);
Siz[u] += Siz[to];
F[u] = max(F[u],Siz[to]);
}
F[u] = max(F[u],N - Siz[u]);
if (F[u] < F[rt]) rt = u;
}
void dfs1(int u){
Siz[u] = 1;
if (!id[c[u]]) st[++top] = c[u],id[c[u]] = top;
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]){
fa[to] = u; dfs1(to);
Siz[u] += Siz[to];
}
}
void dfs2(int u){
int p = id[c[u]],flag = 0;
if (p != 1 && Vis[p] != now) Sum[p] += Siz[u],Vis[p] = now,flag = 1;
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]) dfs2(to);
if (flag) Vis[p] = 0;
}
void dfs3(int u){
int p = id[c[u]],flag = 0;
if (p != 1 && Vis[p] != now) Sumt[p] += Siz[u],ttt += Siz[u],Vis[p] = now,flag = 1;
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]) dfs3(to);
if (flag) Vis[p] = 0;
}
void dfs4(int u){
int p = id[c[u]],flag = 0;
D[u] = D[fa[u]];
if (p != 1 && Vis[p] != now){
D[u] -= (Sum[p] - Sumt[p]) - (tot - tots);
Vis[p] = now; flag = 1;
}
sum[u] += D[u] + (tot - tots);
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]) dfs4(to);
if (flag) Vis[p] = 0;
}
void dfs5(int u){
Sumt[id[c[u]]] = 0;
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]) dfs5(to);
}
void dfs6(int u){
D[u] = 0;
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]) dfs6(to);
}
void solve(int u){
vis[u] = true; Siz[u] = 1;
st[top = 1] = c[u]; id[c[u]] = top;
Redge(u) if (!vis[to = ed[k].to]){
fa[to] = u; dfs1(to);
Siz[u] += Siz[to];
}
now = 0; tot = Siz[u];
Redge(u) if (!vis[to = ed[k].to]){
now++; dfs2(to);
}
REP(i,top) D[u] += Sum[i];
sum[u] += D[u] + Siz[u];
Redge(u) if (!vis[to = ed[k].to]){
now++; ttt = 0; tots = Siz[to]; dfs3(to);
now++; D[u] -= ttt; dfs4(to);
D[u] += ttt; now++; dfs5(to);
}
D[u] = 0;
Redge(u) if (!vis[to = ed[k].to]) dfs6(to);
REP(i,top) Vis[i] = Sum[i] = Sumt[i] = id[st[i]] = 0;
Redge(u) if (!vis[to = ed[k].to]){
N = Siz[to]; F[rt = 0] = INF;
getrt(to); solve(rt);
}
}
int main(){
n = read();
REP(i,n) c[i] = read();
for (int i = 1; i < n; i++) build(read(),read());
F[rt = 0] = INF; N = n;
getrt(1); solve(rt);
REP(i,n) printf("%lld\n",sum[i]);
return 0;
}

洛谷P2664 树上游戏 【点分治 + 差分】的更多相关文章

  1. 洛谷P2664 树上游戏(点分治)

    题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...

  2. 洛谷P2664 树上游戏——点分治

    原题链接 被点分治虐的心态爆炸了 题解 发现直接统计路径上的颜色数量很难,考虑转化一下统计方式.对于某一种颜色\(c\),它对一个点的贡献为从这个点出发且包含这种颜色的路径条数. 于是我们先点分一下, ...

  3. 洛谷 P2664 树上游戏 解题报告

    P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...

  4. 洛谷P2664 树上游戏(点分治)

    传送门 题解 因为一个sb错误调了一个晚上……鬼晓得我为什么$solve(rt)$会写成$solve(v)$啊!!!一个$O(logn)$被我硬生生写成$O(n)$了竟然还能过$5$个点……话说还一直 ...

  5. ●洛谷P2664 树上游戏

    题链: https://www.luogu.org/problemnew/show/P2664题解: 扫描线,线段树维护区间覆盖 https://www.luogu.org/blog/ZJ75211/ ...

  6. 【刷题】洛谷 P2664 树上游戏

    题目描述 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 \[sum_i=\sum_{j=1}^ns(i,j)\] 现在他想让你求出所有 ...

  7. 洛谷P2664 树上游戏

    https://www.luogu.org/problemnew/show/P2664 #include<cstdio> #include<algorithm> #includ ...

  8. P2664 树上游戏

    P2664 树上游戏 https://www.luogu.org/problemnew/show/P2664 分析: 点分治. 首先关于答案的统计转化成计算每个颜色的贡献. 1.计算从根出发的路径的答 ...

  9. Luogu P2664 树上游戏 dfs+树上统计

    题目: P2664 树上游戏 分析: 本来是练习点分治的时候看到了这道题.无意中发现题解中有一种方法可以O(N)解决这道题,就去膜拜了一下. 这个方法是,假如对于某一种颜色,将所有这种颜色的点全部删去 ...

随机推荐

  1. 个人作业-Alpha项目测试

    姓名 蒋东航 学号 201731062328 这个作业属于哪个课程 课程链接 这个作业要求在哪里 作业要求链接 团队名称 机你太美(团队博客链接) 这个作业的目标 了解其他团队项目,学习其他团队优秀方 ...

  2. Meaningful Mean

    You are given an integer sequence of length N, a= {a1,a2,…,aN}, and an integer K.a has N(N+1)⁄2 non- ...

  3. 计算机应用第三次作业:自动开机自动关机 常用DOS命令 关于文件文件夹

    一.自动开机 台式机启动时按住DEL键 进入一个蓝色的界面,界面上是英文提示 这个界面是BIOS  ,是在机器的ROM中存储 二.自动关机 自动重启 方法一在120秒钟后自动关机 win+r (RUN ...

  4. presenting view controller

    Present ViewController详解 Present ViewController Modally 一.主要用途 弹出模态ViewController是IOS变成中很有用的一个技术,UIK ...

  5. TCP、UDP的区别

    TCP(传输控制协议): 1)提供IP环境下的数据可靠传输(一台计算机发出的字节流会无差错的发往网络上的其他计算机,而且计算机A接收数据包的时候,也会向计算机B回发数据包,这也会产生部分通信量),有效 ...

  6. vector总结(更新中。。。)

    vector中这两个属性很容易弄混淆. size是当前vector容器真实占用的大小,也就是容器当前拥有多少个容器. capacity是指在发生realloc前能允许的最大元素数,即预分配的内存空间. ...

  7. NOIP2016——一个逗号引发的血案

    今年江西省报名人数一下子增起来了 隔壁中学来了80+人(虽然都是来给我们垫底的...临时被老师抓来上战场 总之我们赛区参赛人数总算多起来了(起码没再减50%...连续4年减50%真不是随便说说的... ...

  8. k8s的资源限制及资源请求

    容器的资源需求及限制:  需求:requests   ##定义容器运行时至少需要资源  限制:limits     ##定义容器运行时最多能分配的资源    requests:pod.spec.con ...

  9. Thinkphp5的安装

    很长没有码代码了,现在开始做这件事情的意义已经完全与以前不一样了.因为最近有相当长的一段休息时间,是个学习的好时间啊.之前接触过TP3.2,听说后来的版本有挺大的改动,因此呢,现在终于有时间可以好好的 ...

  10. 03等待多个线程返回WaitForMultipleObject

    二. WaitForMultipleObject 等待单个线程返回 1. 函数原型 DWORD WINAPI WaitForMultipleObjects( _In_ DWORD nCount, _I ...