bzoj1101:[POI2007]ZAP-Queries
[POI2007]ZAP-Queries
题意简述:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。
Solution
很显然这是一个莫比乌斯反演题。
\]
然后我们设
g(x)=\sum_{x|d}f(d)
\]
有
\]
因为
\]
然后可以\(f(x)\)可以变成这样
\]
我们设\(t=\frac{d}{x}\),\(f(x)\)就成了这样
\]
此时\(f(x)\)已经可以\(O(n)\)计算了,但是由于多组询问,还需要采取数论分块的方式将时间复杂度优化到\(O(\sqrt{n})\)
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
void read(int &x) {
char ch; bool ok;
for(ok=0,ch=getchar(); !isdigit(ch); ch=getchar()) if(ch=='-') ok=1;
for(x=0; isdigit(ch); x=x*10+ch-'0',ch=getchar()); if(ok) x=-x;
}
#define rg register
const int maxn=5e4;long long ans;
int n,m,d,mu[maxn],prime[maxn],T,tot;bool vis[maxn];
void prepare()
{
mu[1]=1;
for(rg int i=2;i<=maxn;i++)
{
if(!vis[i])prime[++tot]=i,mu[i]=-1;
for(rg int j=1;j<=tot&&prime[j]*i<=maxn;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else {mu[i*prime[j]]=0;break;}
}
}
for(rg int i=1;i<=maxn;i++)mu[i]+=mu[i-1];
}
int main()
{
read(T);prepare();
while(T--)
{
read(n),read(m),read(d);if(n>m)swap(n,m);
ans=0;
for(rg int i=1,j;i<=n;i=j+1)
{
j=min(n/(n/i),m/(m/i));
long long t=1ll*(n/i/d)*(m/i/d);
ans+=t*(mu[j]-mu[i-1]);
}
printf("%lld\n",ans);
}
}
bzoj1101:[POI2007]ZAP-Queries的更多相关文章
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers
Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...
- 【莫比乌斯反演】BZOJ1101 [POI2007]zap
Description 回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b.T, a, b<=4e5. Solution 显然对于gcd=d的,应该把a/d b/d,然 ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- BZOJ 1101: [POI2007]Zap
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2262 Solved: 895[Submit][Status] ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- [POI2007]Zap
bzoj 1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Descriptio ...
随机推荐
- Hadoop实战-Flume之Hdfs Sink(十)
a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = ...
- Duilib学习之基础(一个SDK程序)
版权声明:本文为灿哥哥http://blog.csdn.net/caoshangpa原创文章,转载请标明出处. https://blog.csdn.net/caoshangpa/article/det ...
- 向HTML页面传入参数
这次是想将参数传入HTML页面,通过js获取参数信息,动态生成HTML页面内容: 方法一: <script> function GetArgsFromHref(sHref, sArgNam ...
- linux内核段属性机制【转】
本文转载自:https://github.com/TongxinV/oneBook/issues/9 linux内核段属性机制 以subsys_initcall和module_init为例 subsy ...
- HTML CSS 属性大全
CSS 属性大全 文字属性 「字体族科」(font-family),设定时,需考虑浏览器中有无该字体. 「字体大小」(font-size),注意度量单位.<绝对大小>|<相对大小&g ...
- Oracle在Java中事物管理
对于 对数据库中的数据做dml操作时,能够回滚,这一事物是很重要的 下面例子是对数据库中数据进行修改 package com.demo.oracle; import java.sql.Connecti ...
- cassandra 存储list数组
demo如下: CREATE TABLE users3 ( user_id text PRIMARY KEY, first_name text, last_name text, emails list ...
- nginx开发_Filter模块执行顺序
Filter模块执行顺序 Filter模块的执行顺序是在执行configure文件时决定的,configure文件执行完成后生成objs/ngx_modules.c,文件中定义了一个数组ngx_mod ...
- js 改变对象的引用地址
在业务处理中我们经常会碰到列表中有编辑和新增按钮,为了能够提高代码的公用性,我们经常会使用同一组件处理. 这样会出现一个问题就是编辑的时候直接把对象传过去,直接赋值,引用地址是同一个,所以不管修改了那 ...
- Linux设备驱动之Kobject、Kset
作者:lizuobin(也是我们兼职的论坛答疑助手) 原文: https://blog.csdn.net/lizuobin2/article/details/51523693 纠结又纠结,虽然看了一些 ...