NOIP数学相关模板整理
$O(n)$递推求逆元
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int inv[];
int main(){
int n,p;
scanf("%d%d",&n,&p);
inv[]=;
printf("1\n");
for(int i=;i<=n;i++){
inv[i]=(ll)(p-p/i)*inv[p%i]%p;
printf("%d\n",inv[i]);
}
return ;
}
exgcd求逆元
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
void exgcd(int a,int b,int &x,int &y){
if(!b){
x=;
y=;
return;
}
exgcd(b,a%b,x,y);
int tmp=x;
x=y;
y=tmp-a/b*y;
}
int main(){
int a,b;
scanf("%d%d",&a,&b);
int x,y;
exgcd(a,b,x,y);
x=(x%b+b)%b;
printf("%d\n",x);
return ;
}
模数为质数时,用费马小定理求逆元
#include<cstdio>
typedef long long ll;
const int mod=1e9+;
ll ksm(ll x,ll y){
ll ret=;
while(y){
if(y&) ret=ret*x%mod;
x=x*x%mod;
y>>=;
}
return ret;
}
int main(){
ll a;
scanf("%lld",&a);
printf("%lld",ksm(a,mod-));
return ;
}
$O(n)$求$1!$到$N!$的逆元
$1/i!=(i+1)/(i+1)!$
实现时先求出$f[n]$再反向递推
f[i]=(ll)(i+)*f[i+]%mod
中国剩余定理
贴一篇别人的:http://www.cnblogs.com/MashiroSky/p/5918158.html
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int N,A[],B[];
void Exgcd(ll a,ll b,ll &x,ll &y){
if(!b){
x=;
y=;
return;
}
Exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
}
ll Chinese_Remainder_Theorem(){
ll M=;
for(int i=;i<=N;i++) M*=A[i];
ll ret=,x,y;
for(int i=;i<=N;i++){
ll tmp=M/A[i];
Exgcd(tmp,A[i],x,y);
ret=(ret+tmp*x*B[i])%M;
}
return (ret+M)%M;
}
int main(){
return ;
}
Lucas定理
$C(N,M)\% P = C(N\% P,M\% P) * C(N/P,M/P)\% P$
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int N,M,P;
int inv[],fac[];
int C(int x,int y){
if(x<y) return ;
return (ll)fac[x]*inv[fac[y]]%P*inv[fac[x-y]]%P;
}
int Lucas(){
if(N<M) return ;
ll ret=;
while(M){
ret=ret*C(N%P,M%P)%P;
N/=P;
M/=P;
}
return ret;
}
int main(){
int Test;
scanf("%d",&Test);
while(Test--){
scanf("%d%d%d",&N,&M,&P);
swap(N,M);
N+=M;
inv[]=;for(int i=;i<P;i++) inv[i]=(ll)(P-P/i)*inv[P%i]%P;
fac[]=;for(int i=;i<=N;i++) fac[i]=(ll)fac[i-]*i%P;
printf("%d\n",Lucas());
}
return ;
}
高斯消元
最后回代求解的时候,若发现某一项元系数为零,且式子右边常数为零,则有无数多个解,若常数不为零,则无解。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int inline readint(){
int Num=,Flag=;char ch;
while((ch=getchar())<''||ch>'') if(ch=='-') break;
if(ch=='-') Flag=-; else Num=ch-'';
while((ch=getchar())>=''&&ch<='') Num=Num*+ch-'';
return Num*Flag;
}
int N;
double A[][];
bool Gauss(){
int t;
for(int i=;i<=N;i++){
t=i;
for(int j=i+;j<=N;j++)
if(fabs(A[j][i])>fabs(A[t][i]))
t=j;
if(t!=i)
for(int j=i;j<=N+;j++)
swap(A[t][j],A[i][j]);
for(int j=i+;j<=N;j++){
double r=A[j][i]/A[i][i];
for(int k=i;k<=N+;k++)
A[j][k]-=A[i][k]*r;
}
}
for(int i=N;i>=;i--){
for(int j=i+;j<=N;j++)
A[i][N+]-=A[i][j]*A[j][N+];
if(A[i][i]==&&A[i][N+]==) return false;
A[i][N+]/=A[i][i];
}
return true;
}
int main(){
N=readint();
for(int i=;i<=N;i++)
for(int j=;j<=N+;j++)
A[i][j]=readint();
if(!Gauss()){
puts("No Solution");
return ;
}
for(int i=;i<=N;i++) printf("%.2lf\n",A[i][N+]);
return ;
}
NOIP数学相关模板整理的更多相关文章
- Noip数学整理
目录 Noip数学整理 序 1 取模相关 2 质数相关 3.基本操作 4.方程相关 5.数列相关 6.函数相关 Noip数学整理 序 因为某些原因, Noip对于数学方面的考纲仅停留在比较小的一部分, ...
- 数学相关【真·NOIP】
数论相关 上来就不会的gcd相关.见SCB他威胁我去掉了一个后缀的blog好了:https://blog.csdn.net/suncongbo/article/details/82935140(已经过 ...
- [自用]多项式类数学相关(定理&证明&板子)
写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的 ...
- [总结]多项式类数学相关(定理&证明&板子)
目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代 ...
- BAT 前端开发面经 —— 吐血总结 前端相关片段整理——持续更新 前端基础精简总结 Web Storage You don't know js
BAT 前端开发面经 —— 吐血总结 目录 1. Tencent 2. 阿里 3. 百度 更好阅读,请移步这里 聊之前 最近暑期实习招聘已经开始,个人目前参加了阿里的内推及腾讯和百度的实习生招聘, ...
- codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)
题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...
- 【3D研发笔记】之【数学相关】(一):坐标系
现在开始学习3D基础相关的知识,本系列的数学相关笔记是基于阅读书籍<3D数学基础:图形与游戏开发>而来,实现代码使用AS3,项目地址是:https://github.com/hammerc ...
- 转:基于IOS上MDM技术相关资料整理及汇总
一.MDM相关知识: MDM (Mobile Device Management ),即移动设备管理.在21世纪的今天,数据是企业宝贵的资产,安全问题更是重中之重,在移动互联网时代,员工个人的设备接入 ...
- latch相关视图整理
latch相关视图整理(原创) V$LATCH V$LATCH视图在选取X$KSLLT记录时,进行了Group By及SUM运算,从而得出了一个汇总信息,保存了自实例启动后各类栓锁的统计信息.常用于当 ...
随机推荐
- Snmp在Windows下的实现----WinSNMP编程原理
在Windows 下实现SNMP协议的编程,可以采用Winsock接口,在161,162端口通过udp传送信息.在Windows 2000中,Microsoft已经封装了SNMP协议的实现,提供了一套 ...
- YoutubeAPI使用
YoutubeAPI使用 1 Youtube API能干什么 2 Youtube API 2.0 Youtube简介 2.1 如何使用Youtube API 2.1.1 获取Youtube 的开发 ...
- read,write,accept,connect 超时封装
//read操作加上超时时间. 1 int read_timeout(int fd, void *buf, uint32_t count, int time) { ) { fd_set rSet; F ...
- centos7 安装 python3.5
centos7 安装 python3.5 一. python虚拟环境virtualenv VirtualEnv用于在一台机器上创建多个独立的python运行环境,VirtualEnvWrapper为前 ...
- [OpenGL]配置GLFW(超详细)
注:本文可转载,转载请著名出处:http://www.cnblogs.com/collectionne/p/6937644.html.本文还会修改,如果不在博客园(cnblogs)发现本文,建议访问上 ...
- 381. Insert Delete GetRandom O(1) - Duplicates allowed
Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...
- unity常用插件
Unity3D常用插件,网址:http://jingyan.baidu.com/article/7f766daf4ef2844100e1d079.html ,想想自己也有小半年unity经验了,于是整 ...
- Modulation of Lipid Metabolism by Celastrol (文献分享一组-赵倩倩)
文献名:Modulation of Lipid Metabolism by Celastrol (雷公藤红素对脂质代谢调节作用的研究) 期刊名:Journal of Proteome Research ...
- IOS开发 UITabBarController
UITabBarController使用详解 UITabBarController是IOS中很常用的一个viewController,例如系统的闹钟程 序,ipod程序等.UITabBarContro ...
- JPA-day02 项目结构 编写增删改查测试类