loj2145 「SHOI2017」分手是祝愿
记 \(f_i\) 是从要做 \(i\) 步好操作变成要做 \(i-1\) 步好操作的期望操作次数。
显然 \(f_i=i/n \times 1 + (1-i/n) \times (1 + f_{i+1}+f_i)\),即 \(f_i=(n+(n-i)f_{i+1})/i\)。\(f_n=1\)。
递推即可。
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
typedef long long ll;
int n, k, a[100005], f[100005], hmn, inv[100005], fac, ans;
const int mod=100003;
vector<int> vec[100005];
int main(){
cin>>n>>k;
f[n] = inv[0] = inv[1] = fac = 1;
for(int i=1; i<=n; i++){
scanf("%d", &a[i]);
for(int j=i; j<=n; j+=i)
vec[j].push_back(i);
if(i!=1) inv[i] = (ll)(mod - mod / i) * inv[mod%i] % mod;
fac = (ll)fac * i % mod;
}
for(int i=n; i>=1; i--)
if(a[i]){
hmn++;
for(int j=0; j<vec[i].size(); j++)
a[vec[i][j]] ^= 1;
}
if(hmn<=k) cout<<(ll)hmn*fac%mod<<endl;
else{
for(int i=n-1; i>k; i--)
f[i] = (ll)((ll)(n-i)*f[i+1]+n) * inv[i] % mod;
for(int i=hmn; i>k; i--)
ans = (ans + f[i]) % mod;
ans = (ans + k) % mod;
ans = ((ll)ans * fac) % mod;
cout<<ans<<endl;
}
return 0;
}
loj2145 「SHOI2017」分手是祝愿的更多相关文章
- 【LOJ 2145】「SHOI2017」分手是祝愿
LOJ 2145 100pts 这题...BT啊 首先我们很容易想出\(dp(msk)\)表示现在灯开关的情况是\(msk\),期望通过多少步走到终结态. 很明显\(dp(msk)=\frac{1}{ ...
- LOJ #2145. 「SHOI2017」分手是祝愿
题目链接 LOJ #2145 题解 一道画风正常的--期望DP? 首先考虑如何以最小步数熄灭所有灯:贪心地从大到小枚举灯,如果它亮着则修改它.可以求出总的最小步数,设为\(cnt\). 然后开始期望D ...
- loj #2143. 「SHOI2017」组合数问题
#2143. 「SHOI2017」组合数问题 题目描述 组合数 Cnm\mathrm{C}_n^mCnm 表示的是从 nnn 个互不相同的物品中选出 mmm 个物品的方案数.举个例子, 从 ...
- Solution -「六省联考 2017」「洛谷 P3750」分手是祝愿
\(\mathcal{Description}\) Link. 有 \(n\) 盏编号为 \(1\sim n\),已知初始状态的灯,每次操作选取 \(x\in[1,n]\),使得所有编号为 \ ...
- 【LOJ 2144】「SHOI2017」摧毁「树状图」
LOJ 2144 84pts 首先\(op2\)很简单.直接并查集一搞就好了(话说我现在什么东西都要写个并查集有点...) 然后\(op0\)我不会,就直接\(O(n^2)\)枚举一下\(P\)这个人 ...
- 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP
题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- LOJ #2141. 「SHOI2017」期末考试
题目链接 LOJ #2141 题解 据说这道题可以三分(甚至二分)? 反正我是枚举的 = = 先将t和b数组排序后计算出前缀和, 然后枚举最晚的出成绩时间,每次可以O(1)直接计算调整到该时间所需的代 ...
- 【BZOJ4872】【Shoi2017】分手是祝愿
Time Limit: 20 Sec Memory Limit: 512 MB Description Zeit und Raum trennen dich und mich. 时空将你我分开 ...
随机推荐
- Spark Mllib里如何将预测结果如0或1,转换为文字描述来显示预测结果输出(图文详解)
不多说,直接上干货! 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类StumbleUpon数据集
- Connection conn = DriverManager.getConnection("jdbc:odbc:bbs");
Connection conn = DriverManager.getConnection("jdbc:odbc:bbs"); 这是JDBC连接数据库的时候用的一句话,,Conne ...
- arcengine geometry union操作
以前得到的结果老是某一个,用下面的方法就可以获取合并后的结果 IGeometry pUnionGeo = null; var bFirst = true; foreach (IGeometry pGe ...
- WPF中获取指定坐标依赖对象数据项
上图中红色框区域是一个自定义的ListBox控件,需要实现的功能是,点击红框区域中某项时,获取当前选中项的数据项 控件的MouseDown事件部分代码为: var x = TreeHelper.Fin ...
- 借助sass的Maps功能使得响应式代码更有条理
原文来自这里 本文综合了原文(by Jonathan Suh)以及笔者自己的理解. Introduction 众所周知,写代码与写维护性高的代码是两回事.而涉及到响应式,代码又特别容易变的杂乱.借助s ...
- Mongodb JAVA API
连接mongodb 1.连接一个mongodb ); 2.连接mongodb集群 MongoClient mongoClient = ), new ServerAddress("localh ...
- SQLite-表达式
SQLite -表达式 一个表达式是一个或多个值的组合,运算符和SQL函数,评价一个值. SQL表达式就像公式和都写在查询语言.您还可以使用为特定的数据集查询数据库. 语法: 考虑到SELECT语句的 ...
- ConCurrent in Practice小记 (4)
ConCurrent in Practice小记 (4) Executors Callable && Future <T> Callable:此接口有一个call()方法. ...
- Eclipse 和 MyEclipse 工程描述符
有时候在一个Java工程里我们需要加入第三方jar包,这时你加入的最好相对路径, 而不是绝对路径.否则你的工程拿到别处就不行运行了.意思就是说你最好把相关的jar放到工程目录下. 对于Web工程来说相 ...
- FaceBook pop 动画开源框架使用教程说明
https://github.com/facebook/pop Pop is an extensible animation engine for iOS and OS X. In addition ...