https://www.cs.utah.edu/~jeffp/teaching/cs5955/L4-Jaccard+Shingle.pdf

https://www.cs.utah.edu/~jeffp/teaching/cs5955/L5-Minhash.pdf

【可测空间  convert the data (homeworks, webpages, emails) into an object in an abstract space that we know how to measure distance 】

We will study how to define the distance between sets, specifically with the Jaccard distance. To illustrate and motivate this study, we will focus on using Jaccard distance to measure the distance between documents. This uses the common “bag of words” model, which is simplistic, but is sufficient for many applications. We start with some big questions. This lecture will only begin to answer them. • Given two homework assignments (reports) how can a computer detect if one is likely to have been plagiarized from the other without understanding the content? • In trying to index webpages, how does Google avoid listing duplicates or mirrors? • How does a computer quickly understand emails, for either detecting spam or placing effective advertisers? (If an ad worked on one email, how can we determine which others are similar?)

【词带将文本段落转化为数值集合 convert documents into sets】

4.2 Documents to Sets How do we apply this set machinery to documents? Bag of words vs. Shingles The first option is the bag of words model, where each document is treated as an unordered set of words. A more general approach is to shingle the document. This takes consecutive words and group them as a single object. A k-shingle is a consecutive set of k words. So the set of all 1-shingles is exactly the bag of words model. An alternative name to k-shingle is an k-gram. These mean the same thing. D1 : I am Sam. D2 : Sam I am. D3 : I do not like green eggs and ham. D4 : I do not like them, Sam I am. The (k = 1)-shingles of D1∪D2∪D3∪D4 are: {[I], [am], [Sam], [do], [not], [like], [green], [eggs], [and], [ham], [them]}.

The (k = 2)-shingles of D1∪D2∪D3∪D4 are: {[I am], [am Sam], [Sam Sam], [Sam I], [am I], [I do], [do not], [not like], [like green], [green eggs], [eggs and], [and ham], [like them], [them Sam]}. The set of k-shingles of a document with n words is at most n − k. The takes space O(kn) to store them all. If k is small, this is not a high overhead. Furthermore, the space goes down as items are repeated.

The set of k-shingles of a document with n words is at most n − k. The takes space O(kn) to store them all. If k is small, this is not a high overhead. Furthermore, the space goes down as items are repeated.

【勘误--k n n-k+1  空间复杂度 space O(kn) 】

【Jaccard 对相似度的度量 Jaccard with Shingles】

4.3 Jaccard with Shingles So how do we put this together. Consider the (k = 2)-shingles for each D1, D2, D3, and D4: D1 : [I am], [am Sam] D2 : [Sam I], [I am] D3 : [I do], [do not], [not like], [like green], [green eggs], [eggs and], [and ham] D4 : [I do], [do not], [not like], [like them], [them Sam], [Sam I], [I am]

Now the Jaccard similarity is as follows: JS(D1, D2) = 1/3 ≈ 0.333 JS(D1, D3) = 0 = 0.0 JS(D1, D4) = 1/8 = 0.125 JS(D2, D3) = 0 = 0.0 JS(D3, D4) = 2/7 ≈ 0.286 JS(D3, D4) = 3/11 ≈ 0.273 Next time we will see how to use this special abstract structure of sets to compute this distance (approximately) very efficiently and at extremely large scale.

Jaccard Similarity and Shingling的更多相关文章

  1. jaccard similarity coefficient 相似度计算

    Jaccard index From Wikipedia, the free encyclopedia     The Jaccard index, also known as the Jaccard ...

  2. Jaccard similarity(杰卡德相似度)和Abundance correlation(丰度相关性)

    杰卡德距离(Jaccard Distance) 是用来衡量两个集合差异性的一种指标,它是杰卡德相似系数的补集,被定义为1减去Jaccard相似系数.而杰卡德相似系数(Jaccard similarit ...

  3. 基于jaccard相似度的LSH

    使用Python通过LSH建立推荐引擎 LSH:一个可以用来处理成百上千行的算法 前提: Python 基础 Pandas 学完本教程之后,解锁成就: 通过建立shingles 为LSH准备训练集和测 ...

  4. 机器学习中的相似性度量(Similarity Measurement)

    机器学习中的相似性度量(Similarity Measurement) 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间 ...

  5. 相似性度量(Similarity Measurement)与“距离”(Distance)

    在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance).采用什么样的方法计算距离是很讲究,甚至关 ...

  6. 相似性分析之Jaccard相似系数

    Jaccard, 又称为Jaccard相似系数(Jaccard similarity coefficient)用于比较有限样本集之间的相似性与差异性.Jaccard系数值越大,样本相似度越高 公式: ...

  7. Dice Similarity Coefficent vs. IoU Dice系数和IoU

    Dice Similarity Coefficent vs. IoU Several readers emailed regarding the segmentation performance of ...

  8. 相似系数_杰卡德距离(Jaccard Distance)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...

  9. 海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensitive Hashing, LSH

    http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

随机推荐

  1. Single Number II - LeetCode

    Given an array of integers, every element appears three times except for one. Find that single one. ...

  2. POJ 2505 A multiplication game [博弈]

    题意:两个人做游戏,每个人都可以在自己的回合里将数p乘以2到9之间的一个数,初始时p=1,谁先将p乘到大于等于n就算赢. 思路:一开始我算sg值,结果算来算去都没算明白... 后来看了别人题解,才豁然 ...

  3. [BUG] CS0234: 命名空间“System.Web.Mvc”中不存在类型或命名空间名称“Ajax”(是否缺少程序集引用?)

    写在前面 在浏览view的时候,突然出现这个错误,不过还是很好解决的. bug 解决方案

  4. EXCEL最大行数问题:org.apache.xmlbeans.impl.store.Saver$TextSaver.resize(Saver.java:1700)

    今天在使用POI导出数据时,出现如下错误: ES查询阅读推荐比: resList: start: 写入excel Exception in thread "main" java.l ...

  5. python tkinter GUI绘制,以及点击更新显示图片

    tkinter 绘制GUI简单明了,制作一些简单的GUI足够,目前遇到的一个问题是不能同时排列显示多幅图片(目前没找到同时显示解决方法), 退而求其次,改成增加一个update按钮,每次点下按钮自动更 ...

  6. Android 百度地图开发(二)

    这一篇文章主要解说的是百度地图的定位功能,然后还有MyLocationOverlay和PopupOverlay两个地图覆盖物的使用.Overlay是"图层"或"覆盖物&q ...

  7. hibernate oneToMany 缓存

    @OneToMany(mappedBy="carFieldType", cascade={CascadeType.ALL}, fetch = FetchType.EAGER)@Ca ...

  8. Asp 解析 XML并分页显示

    Asp 解析 XML并分页显示 Asp 解析 XML并分页显示,演示样例源代码例如以下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tr ...

  9. JSF教程(8)——生命周期之Apply Request Values Phase

    当一个组件树在一个postbacks请求中被恢复之后其中每一个组件从request的參数中取得各自的值,这里使用的是processDecodes方法. 这个值会保存在本地的每一个组件中,在源代码中此过 ...

  10. java Map 实现类的对比

    java为数据结构中的映射定义了一个接口 java.util.Map ,他有四个实现类