Fisherfaces 算法的具体实现源码
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/ #include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp" #include <iostream>
#include <fstream>
#include <sstream> using namespace cv;
using namespace std; static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// Create and return normalized image:
Mat dst;
switch(src.channels()) {
case :
cv::normalize(_src, dst, , , NORM_MINMAX, CV_8UC1);
break;
case :
cv::normalize(_src, dst, , , NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
} static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, ));
labels.push_back(atoi(classlabel.c_str()));
}
}
} int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc < ) {
cout << "usage: " << argv[] << " <csv.ext> <output_folder> " << endl;
exit();
}
string output_folder = ".";
if (argc == ) {
output_folder = string(argv[]);
}
// Get the path to your CSV.
string fn_csv = string(argv[]);
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit();
}
// Quit if there are not enough images for this demo.
if(images.size() <= ) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[].rows;
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - ];
int testLabel = labels[labels.size() - ];
images.pop_back();
labels.pop_back();
// The following lines create an Fisherfaces model for
// face recognition and train it with the images and
// labels read from the given CSV file.
// If you just want to keep 10 Fisherfaces, then call
// the factory method like this:
//
// cv::createFisherFaceRecognizer(10);
//
// However it is not useful to discard Fisherfaces! Please
// always try to use _all_ available Fisherfaces for
// classification.
//
// If you want to create a FaceRecognizer with a
// confidence threshold (e.g. 123.0) and use _all_
// Fisherfaces, then call it with:
//
// cv::createFisherFaceRecognizer(0, 123.0);
//
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
// The following line predicts the label of a given
// test image:
int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// Here is how to get the eigenvalues of this Eigenfaces model:
Mat eigenvalues = model->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors (read Eigenfaces):
Mat W = model->getMat("eigenvectors");
// Get the sample mean from the training data
Mat mean = model->getMat("mean");
// Display or save:
if(argc == ) {
imshow("mean", norm_0_255(mean.reshape(, images[].rows)));
} else {
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(, images[].rows)));
}
// Display or save the first, at most 16 Fisherfaces:
for (int i = ; i < min(, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// get eigenvector #i
Mat ev = W.col(i).clone();
// Reshape to original size & normalize to [0...255] for imshow.
Mat grayscale = norm_0_255(ev.reshape(, height));
// Show the image & apply a Bone colormap for better sensing.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_BONE);
// Display or save:
if(argc == ) {
imshow(format("fisherface_%d", i), cgrayscale);
} else {
imwrite(format("%s/fisherface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
}
}
// Display or save the image reconstruction at some predefined steps:
for(int num_component = ; num_component < min(, W.cols); num_component++) {
// Slice the Fisherface from the model:
Mat ev = W.col(num_component);
Mat projection = subspaceProject(ev, mean, images[].reshape(,));
Mat reconstruction = subspaceReconstruct(ev, mean, projection);
// Normalize the result:
reconstruction = norm_0_255(reconstruction.reshape(, images[].rows));
// Display or save:
if(argc == ) {
imshow(format("fisherface_reconstruction_%d", num_component), reconstruction);
} else {
imwrite(format("%s/fisherface_reconstruction_%d.png", output_folder.c_str(), num_component), reconstruction);
}
}
// Display if we are not writing to an output folder:
if(argc == ) {
waitKey();
}
return ;
}
Fisherfaces 算法的具体实现源码的更多相关文章
- 中国象棋程序的设计与实现(六)--N皇后问题的算法设计与实现(源码+注释+截图)
八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题. 该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列 ...
- 数据挖掘:关联规则的apriori算法在weka的源码分析
相对于机器学习,关联规则的apriori算法更偏向于数据挖掘. 1) 测试文档中调用weka的关联规则apriori算法,如下 try { File file = new File("F:\ ...
- 数据挖掘 FP-tree算法C++实现及源码
FP-growth挖掘算法 步骤一 扫描数据库,扫描数据库一次,得到频繁1-项集,把项按支持度递减排序,再一次扫描数据库,建立FP-tree 步骤二 对每个项,生成它的 条件模式库 步骤三 用条件模式 ...
- 常用限流算法与Guava RateLimiter源码解析
在分布式系统中,应对高并发访问时,缓存.限流.降级是保护系统正常运行的常用方法.当请求量突发暴涨时,如果不加以限制访问,则可能导致整个系统崩溃,服务不可用.同时有一些业务场景,比如短信验证码,或者其它 ...
- 最快速的“高斯”模糊算法(附Android源码)
这是一个外国人的算法,本人是搬运工.参考:http://blog.ivank.net/fastest-gaussian-blur.html 1:高斯模糊算法(参考:http://www.rua ...
- A*算法(附c源码)
关于A*算法网上介绍的有很多,我只是看了之后对这个算法用c写了一下,并测试无误后上传以分享一下,欢迎指正!下面是我找的一个介绍,并主要根据这个实现的. 寻路算法不止 A* 这一种, 还有递归, 非递归 ...
- SIFT算法的教程及源码
1.ubc:DAVID LOWE---SIFT算法的创始人,两篇巨经典经典的文章http://www.cs.ubc.ca/~lowe/[1] 2.cmu:YanKe---PCASIFT,总结的SIFT ...
- 常见算法合集[java源码+持续更新中...]
一.引子 本文搜集从各种资源上搜集高频面试算法,慢慢填充...每个算法都亲测可运行,原理有注释.Talk is cheap,show me the code! 走你~ 二.常见算法 2.1 判断单向链 ...
- 【数据结构&算法】08-栈概念&源码
目录 前言 栈的定义 定义 常见应用 栈的常见应用 进栈出栈变化形式 栈的抽象数据类型 栈的顺序存储结构及实现 栈的顺序存储结构 顺序栈 顺序栈的结构定义 两栈共享空间 栈的链式存储结构及实现 栈的链 ...
随机推荐
- [Xcode 实际操作]八、网络与多线程-(9)使用异步Get方式获取网页源码
目录:[Swift]Xcode实际操作 本文将演示如何通过Get请求方式,异步获取网页源码. 异步请求与同步请求相比,不会阻塞程序的主线程,而会建立一个新的线程. 在项目导航区,打开视图控制器的代码文 ...
- 阿里巴巴开源性能监控神器Arthas初体验
如果问性能测试中最难的是哪部分,相信很多人会说“性能调优”.确实是这样,性能调优是一个非常复杂.技术含量很高的工作.涉及到的知识面很广.以我多年从业经验来看,在企业里,大多数的性能调优都是由开发架构师 ...
- jq weui 滚动加载的坑
1.一般情况下使用官网给个demo就可以了,如下: var loading = false; //状态标记 $(document.body).infinite().on("infinite& ...
- swipe轮播插件零基础实用
此篇博客整理了常用的轮播效果,适用于所有开发人员 swipe是当下相对而言较好用的轮播插件,下面是博主整理的demo源代码,可直接上手(备注:需自己手动swipe所需的j和css) 此段代码总共是有三 ...
- [51Nod1952] 栈
Description 不支持后端删除的dequeue,每次操作后查询最大值. \(n\leq10^7\).时限1.5s,不用考虑读入/输出复杂度. Solution 首先考虑如果没有后端删除怎么做, ...
- HDU-1263(STL+排序)
水果 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submiss ...
- centOS 部署服务器(三)
今天一个新的项目终于能够重新安装mysql了,分享下步骤: 1.下载地址:http://dev.mysql.com/downloads/mysql/ (选择Linux - Generic版本的Lin ...
- 使用express+mongoDB搭建多人博客 学习(3)connect-flash和mongodb,表单注册
1.根目录下新建settings.js,存放数据库配置 module.exports={ cookieSecret:"myblog", db:"blog", h ...
- Excel2Json记录
1.有关配置的读取 import configparser import codecs #配置文件格式[config] #自定义的配置key=valuekey2=value2 读取配置 conf = ...
- 记次浙大月赛 134 - ZOJ Monthly, June 2014
链接 虽做出的很少,也记录下来,留着以后来补..浙大题目质量还是很高的 B 并查集的一些操作,同类和不同类我是根据到根节点距离的奇偶判断的,删点是直接新加一个点,记得福大月赛也做过类似的,并差集的这类 ...