#include "opencv/cv.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp" #include <iostream>
#include <stdio.h> using namespace std;
using namespace cv; String cascadeName = "D:\\OpenCV-2.4.2\\data\\haarcascades\\haarcascade_frontalface_alt.xml"; IplImage* cutImage(IplImage* src, CvRect rect) {
cvSetImageROI(src, rect);
IplImage* dst = cvCreateImage(cvSize(rect.width, rect.height),
src->depth,
src->nChannels); cvCopy(src,dst,0);
cvResetImageROI(src);
return dst;
} IplImage* detect( Mat& img, CascadeClassifier& cascade, double scale)
{
int i = 0;
double t = 0;
vector<Rect> faces;
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); cvtColor( img, gray, CV_BGR2GRAY );
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
equalizeHist( smallImg, smallImg ); t = (double)cvGetTickCount();
cascade.detectMultiScale( smallImg, faces,
1.3, 2, CV_HAAR_SCALE_IMAGE,
Size(30, 30) );
t = (double)cvGetTickCount() - t;
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
IplImage* temp = cutImage(&(IplImage(img)), cvRect(r->x, r->y, r->width, r->height));
return temp;
} return NULL;
}
//画直方图用
int HistogramBins = 256;
float HistogramRange1[2]={0,255};
float *HistogramRange[1]={&HistogramRange1[0]};
int CompareHist(IplImage* image1, IplImage* image2)
{
IplImage* srcImage;
IplImage* targetImage;
if (image1->nChannels != 1) {
srcImage = cvCreateImage(cvSize(image1->width, image1->height), image1->depth, 1);
cvCvtColor(image1, srcImage, CV_BGR2GRAY);
} else {
srcImage = image1;
} if (image2->nChannels != 1) {
targetImage = cvCreateImage(cvSize(image2->width, image2->height), srcImage->depth, 1);
cvCvtColor(image2, targetImage, CV_BGR2GRAY);
} else {
targetImage = image2;
} CvHistogram *Histogram1 = cvCreateHist(1, &HistogramBins, CV_HIST_ARRAY,HistogramRange);
CvHistogram *Histogram2 = cvCreateHist(1, &HistogramBins, CV_HIST_ARRAY,HistogramRange); cvCalcHist(&srcImage, Histogram1);
cvCalcHist(&targetImage, Histogram2); cvNormalizeHist(Histogram1, 1);
cvNormalizeHist(Histogram2, 1); // CV_COMP_CHISQR,CV_COMP_BHATTACHARYYA这两种都可以用来做直方图的比较,值越小,说明图形越相似
printf("CV_COMP_CHISQR : %.4f\n", cvCompareHist(Histogram1, Histogram2, CV_COMP_CHISQR));
printf("CV_COMP_BHATTACHARYYA : %.4f\n", cvCompareHist(Histogram1, Histogram2, CV_COMP_BHATTACHARYYA)); // CV_COMP_CORREL, CV_COMP_INTERSECT这两种直方图的比较,值越大,说明图形越相似
printf("CV_COMP_CORREL : %.4f\n", cvCompareHist(Histogram1, Histogram2, CV_COMP_CORREL));
printf("CV_COMP_INTERSECT : %.4f\n", cvCompareHist(Histogram1, Histogram2, CV_COMP_INTERSECT)); cvReleaseHist(&Histogram1);
cvReleaseHist(&Histogram2);
if (image1->nChannels != 1) {
cvReleaseImage(&srcImage);
}
if (image2->nChannels != 1) {
cvReleaseImage(&targetImage);
}
return 0;
}
String srcImage = "d:\\ldh1.jpg";
String targetImage = "d:\\ldh5.jpg";
int main(int argc, char* argv[])
{
CascadeClassifier cascade;
namedWindow("image1");
namedWindow("image2");
if( !cascade.load( cascadeName ) )
{
return -1;
} Mat srcImg, targetImg;
IplImage* faceImage1;
IplImage* faceImage2;
srcImg = imread(srcImage);
targetImg = imread(targetImage);
faceImage1 = detect(srcImg, cascade, 1);
if (faceImage1 == NULL) {
return -1;
}
// cvSaveImage("d:\\face.jpg", faceImage1, 0);
faceImage2 = detect(targetImg, cascade, 1);
if (faceImage2 == NULL) {
return -1;
}
// cvSaveImage("d:\\face1.jpg", faceImage2, 0);
imshow("image1", Mat(faceImage1));
imshow("image2", Mat(faceImage2)); CompareHist(faceImage1, faceImage2);
cvWaitKey(0);
cvReleaseImage(&faceImage1);
cvReleaseImage(&faceImage2);
return 0;
}

  

CV做直方图的比较说明图形越相似性的更多相关文章

  1. python对web服务器做压力测试并做出图形直观显示

    压力测试有很多工具啊.apache的,还有jmeter, 还有loadrunner,都比较常用. 其实你自己用python写的,也足够用. 压力测试过程中要统计时间. 比如每秒的并发数,每秒的最大响应 ...

  2. 【ichartjs】用ichartjs替代Excel做直方图

    在 http://www.cnblogs.com/xiandedanteng/p/8717506.html 一文中,最后是用Excel作图,现在用ichartjs替代之. 效果如下: 文件下载: ht ...

  3. opencv学习之路(20)、直方图应用

    一.直方图均衡化--equalizeHist() #include "opencv2/opencv.hpp" using namespace cv; void main() { 6 ...

  4. opencv python:图像直方图 histogram

    直接用matplotlib画出直方图 def plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开 ...

  5. Cocoa Drawing Guide学习part1——基础和图形上下文 (转)

    原文:http://noark9.github.io/2013/12/28/cocoa-drawing-guide-study-part-1/ 简介 cocoa drawing由AppKit提供并且也 ...

  6. Oracle 直方图理论

    一.何为直方图 直方图是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边.以频数为高度的一系列连接起来的直方型矩形图,如图所示 二.ORACLE 直方图 在Oracle中 ...

  7. opencv2对于读书笔记——背投影图像的直方图来检测待处理的内容

    一些小的概念 1.直方图是图像内容的一个重要特性. 2.假设一幅图像的区域中显示的是一种独特的纹理或是一个独特的物体,那么这个区域的直方图能够看作是一个概率函数,它给出的是某个像素属于该纹理或物体的概 ...

  8. OpenCV绘制图像中RGB三个通道的直方图

    一开始是看<OpenCV计算机视觉编程攻略(第2版)>这本书学做直方图,但是书本里说直方图的部分只详细说了黑白图像(单通道)的直方图绘制方法,RGB图像的直方图只说了如何计算,没有说计算完 ...

  9. Python+OpenCV图像处理(八)—— 图像直方图

    直方图简介:图像的直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素.还不明白?就是统计一幅图某个亮度像素数量.比如对于灰度值12,一幅图里面有2000 个像 ...

随机推荐

  1. SQL 截取字段空格之前的数据

    MYSQL group by left(city,LOCATE(' ',city)) SQL select a,left(a,charindex( ' ',a)) FROM test SELECT g ...

  2. codevs1553 互斥的数

    1553 互斥的数    

  3. 遍历问题 codevs

    1029 遍历问题 1029 遍历问题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 我们都很熟悉二叉树的前序.中序. ...

  4. Python学习笔记(随机数)

    random模块的作用是产生随机数. import random num = random.randint(1,100) random.randint(a, b)可以生成一个a到b间的随机整数,包括a ...

  5. 【实验吧】该题不简单——writeup

    题目地址:http://ctf5.shiyanbar.com/crack/3/ 一定要注意读题: 要求找出用户名为hello的注册码,这八成就是 要写注册机啊! ——————————————————— ...

  6. AtCoder Regular Contest 082 ABCD

    A #include<bits/stdc++.h> using namespace std; ]; int n,m; int main(){ cin>>n>>m; ...

  7. 057 Insert Interval 插入区间

    给出一个无重叠的按照区间起始端点排序的区间列表.在列表中插入一个新的区间,你要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间).示例 1:给定区间 [1,3],[6,9],插入并合并 ...

  8. mysql导入sql文件错误#1044 - Access denied for user 'root'@'localhost'

    在我的个人知识管理中,经常用到mysql数据库,wordpress搭建的worklog.搜索测试数据.我blog的测试环境等.我在自己的电脑上整了WAMP(Windows Apache MySQL P ...

  9. Java中的构造函数——通过示例学习Java编程(14)

      作者:CHAITANYA SINGH 来源:https://www.koofun.com//pro/kfpostsdetail?kfpostsid=25 构造函数是用来初始化新创建的对象的代码块. ...

  10. Java的API及Object类、String类、字符串缓冲区

    Java 的API 1.1定义 API: Application(应用) Programming(程序) Interface(接口) Java API就是JDK中提供给开发者使用的类,这些类将底层的代 ...