Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 282  Solved: 121
[
Submit][Status][Discuss]

Description

太空中一共有n座星球,它们之间可以通过空间传送装置进行转移。空间传送装置分为m种,第i种装置可以用4个参

数a_i,b_i,c_i,d_i来描述。因为时空抖动的问题,在非整数时刻禁止使用空间传送装置。如果在整数s时刻使用装

置,那么需要花费((a_i*s+b_i) mod c_i)+d_i单位时间才能完成传送。现在是s时刻,小Q位于1号星球,请写一个

程序计算从1号星球到每个星球最少需要的时间。

Input

第一行包含4个正整数n,m,s,e(2<=n<=100000,1<=m<=50,1<=s<=2000,1<=e<=200000)

分别表示星球的个数、空间传送装置的种类数、当前的时间以及空间传送装置的个数。

接下来m行,每行4个正整数a_i,b_i,c_i,d_i(1<=a_i,b_i,c_i,d_i<=2000),依次描述每种装置的参数。

接下来e行,每行3个正整数u_i,v_i,w_i(1<=u_i,v_i<=n,u_i!=v_i,1<=w_i<=m)

表示从星球u_i可以使用第w_i种装置单向传送到星球v_i。

Output

输出n-1行,每行一个整数,第i行表示从1到i+1的最少所需时间,若无解输出-1。

Sample Input

3 2 1 3
1 1 5 1
2 2 7 1
1 2 1
2 3 2
3 1 1

Sample Output

3
6
HINT
1到3:在时刻1使用第一种装置从1传送到2,花费时间3,再等待2单位时间,于时刻6使用第二种装置到达3,花费时间1。

题解:

     ①首先要发现问题具有周期性(产生原因:取模操作)

     ②由于设备数很小,所以可以记录取模的状态: D[i][j]表示第i个机器在时间%c[i]为j的情况下从一个点走到另一个点所需要花费的时间(时间=等候时间+行走时间)

     ③上述数组维护前后缀最小值,预处理得出

     ④最后进行一遍最短路就可以了

     ⑤贪心成立的依据:时间尽量小不会有坏处

#include<queue>
#include<stdio.h>
#include<algorithm>
#define go(i,a,b) for(int i=a;i<=b;i++)
#define ro(i,a,b) for(int i=a;i>=b;i--)
#define fo(i,a,x) for(int i=a[x],v=e[i].v;i;i=e[i].next,v=e[i].v)
using namespace std;const int N=100003;
int n,m,s,t;
int a[N],b[N],c[N],d[N];
int head[N],k=1,U,V,W;
int val[N],lef[N],rig[N],D[60][2007];
queue<int>q;bool inq[N];int dis[N];
struct E{int v,next,w;}e[N<<1];
void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;}
int main()
{ scanf("%d%d%d%d",&n,&m,&s,&t);
go(i,1,m)scanf("%d%d%d%d",a+i,b+i,c+i,d+i);
go(i,1,t)scanf("%d%d%d",&U,&V,&W),ADD(U,V,W); go(i,1,m)
{
go(j,0,c[i]-1)val[j]=(a[i]*j+b[i])%c[i]+d[i];
lef[0]=val[0];rig[c[i]-1]=c[i]-1+val[c[i]-1];
go(j,1,c[i]-1)lef[j]=min(lef[j-1],val[j]+j);
ro(j,c[i]-2,0)rig[j]=min(rig[j+1],val[j]+j);
go(j,0,c[i]-1)D[i][j]=min(lef[j]-j+c[i],rig[j]-j);
} go(i,2,n)dis[i]=1000000000;
dis[1]=s;q.push(1);int u;
while(!q.empty())
{
inq[u=q.front()]=0;q.pop();
fo(i,head,u)if(dis[u]+D[e[i].w][dis[u]%c[e[i].w]]<dis[v])
{
dis[v]=dis[u]+D[e[i].w][dis[u]%c[e[i].w]];
!inq[v]?q.push(v),inq[v]=1:1;
}
} go(i,2,n)printf("%d\n",dis[i]==1000000000?-1:dis[i]-s);return 0;
}//Paul_Guderian

就像这时的我满怀悲伤,唱着这段无人喝彩的旋律……——汪峰《再见蒲公英》

【BZOJ 5047 空间传送装置】的更多相关文章

  1. bzoj5047: 空间传送装置

    Description 太空中一共有n座星球,它们之间可以通过空间传送装置进行转移.空间传送装置分为m种,第i种装置可以用4个参 数a_i,b_i,c_i,d_i来描述.因为时空抖动的问题,在非整数时 ...

  2. 【BZOJ5047】空间传送装置 最短路

    [BZOJ5047]空间传送装置 Description 太空中一共有n座星球,它们之间可以通过空间传送装置进行转移.空间传送装置分为m种,第i种装置可以用4个参数a_i,b_i,c_i,d_i来描述 ...

  3. 【bzoj5047】空间传送装置 堆优化Dijkstra

    题目描述 n个点e条边的有向图,每条边是m种类型之一.第i种类型在第x时刻通过所花费的时间为$(a_i*x+b_i)\mod c_i+d_i$.可以在某个点停留.问:在s时刻从1号点出发,到达每个点所 ...

  4. bzoj5047 [Lydsy1709月赛]空间传送装置 最短路

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5047 题解 题目中没有说可以停留在一个点等待.问了别人才知道停留是可以的. 那么既然停留是可以 ...

  5. BZOJ5047 空间传送装置 2017年9月月赛 最短路 SPFA

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5047 题意概括 概括??~别为难语文做一题错两题的我了…… 题解 我们发现,对于某一种装置,有c种 ...

  6. fhq_treap 总结

    今天跟着zcg大神学了一发fhq_treap 发现在维护区间问题上fhq_treap不仅思维量小,而且代码量更小 是Splay的不错的替代品,不过至今还是有一些问题不能很好的解决 譬如查询某个数在序列 ...

  7. [BZOJ1925][SDOI2010]地精部落(DP)

    题意 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...

  8. [BZOJ1791][IOI2008]Island岛屿(环套树DP)

    同NOI2013快餐店(NOI出原题?),下面代码由于BZOJ栈空间过小会RE. 大致是对每个连通块找到环,在所有内向树做一遍DP,再在环上做两遍前缀和优化的DP. #include<cstdi ...

  9. BZOJ4943 & 洛谷3823 & UOJ315:[NOI2017]蚯蚓排队——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4943 http://uoj.ac/problem/315 https://www.luogu.or ...

随机推荐

  1. 题解 CF20A 【BerOS file system】

    对于此题,我的心近乎崩溃 这道题,注意点没有什么,相信大佬们是可以自己写出来的 我是蒟蒻,那我是怎么写出来的啊 好了,废话少说,开始进入正题 这道题,首先我想到的是字符串的 erase 函数,一边运行 ...

  2. 【luogu P1783 海滩防御】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1783 先把题目改造一下:题目所求是要一条能从0列到n列的路径,使其路径上的最大边长一半最小. 为什么是一半呢 ...

  3. 阿里云服务器下安装LAMP环境(CentOS Linux 6.3) 安装与配置 FTP 服务器

    我们经常会使用 FTP,把本地电脑上的文件上传到服务器上,或者把服务器上的文件下载到自己的电脑里面.FTP 有服务端和客户端,FTP 的服务端提供了这种传输文件的服务,FTP 的客户端提供了传输文件的 ...

  4. win10如何修改host文件

    首先找到host文件,一般位于:C:\Windows\System32\drivers\etc 之后用记事本打开,直接修改.保存txt文件到桌面. 最后删除后缀名,再粘贴回去就可以了.

  5. Java - Java 中的三种 ClassLoader

    1.虚拟机类加载器(称为“bootstrap class loader”),它本身没有父类加载器,它负责加载虚拟机的内置类,由于它是用C.C++写的,所以Java无法拿到其class文件,返回的都是空 ...

  6. 无屏幕和键盘配置树莓派WiFi和SSH

    原文转载:http://shumeipai.nxez.com/2017/09/13/raspberry-pi-network-configuration-before-boot.html 不算是什么新 ...

  7. java一些问题的解答

    1.java 枚举类型和数据二进制等问题思考 以下代码的输出结果是什么?为什么会有这样的输出结果? int X=100; int Y=200; System.out.println("X+Y ...

  8. django之模型层

    1. ORM MVC或者MTV框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员 ...

  9. (转)Xcode6中自动布局autolayout和sizeclass的使用

    Xcode6中自动布局autolayout和sizeclass的使用   一.关于自动布局(Autolayout) 在Xcode中,自动布局看似是一个很复杂的系统,在真正使用它之前,我也是这么认为的, ...

  10. c++ 操作符优先级

    优先级 操作符 描述 例子 结合性 1 ()[]->.::++-- 调节优先级的括号操作符数组下标访问操作符通过指向对象的指针访问成员的操作符通过对象本身访问成员的操作符作用域操作符后置自增操作 ...