[JSOI2012][bzoj4332] 分零食 [FFT]
题面
思路
首先,这个数据如果没有这么大,我们还是可以做朋友的......
设$dp\left[i\right]\left[j\right]$代表前j个零食分给了前i个人的方案数
那么dp方程显然:
$dp\left[i\right]\left[j\right]=\sum_{k=1}^{j-1} dp\left[i-1\right]\left[k\right]+f\left(j-k\right)$
其中$f\left(x\right)$就是题目里给的那个二次函数
同时有一个性质:
$dp\left[i\right]\left[j\right]=dp\left[\frac i2\right]\left[k\right]\ast dp\left[\frac i2\right]\left[j-k\right]$
显然这道题不能直接O(nm)递推......那我们换个办法来想
n辣么大,为什么我们不考虑 一下用倍增的方法呢?正好上面那个性质可以利用一下
并且还应当注意,我们最后要求的是$\sum_{i=1}^n dp\left[i\right]\left[m\right]$
所以我们设$p\left[i\right]\left[j\right]=\sum_{k=1}^n dp\left[k\right]\left[j\right]$
$p\left[i\right]\left[j\right]=p\left[\frac i2\right]\left[j\right]+\sum_{k=1}^{\frac i2}dp\left[k+\frac i2\right]\left[j\right]$
$p\left[i\right]\left[j\right]=p\left[\frac i2\right]\left[j\right]+\sum_{k=1}^{\frac i2}\sum_{l=1}^{j-1}dp\left[k\right]\left[l\right]dp\left[\frac i2\right]\left[j-l\right]$
$p\left[i\right]\left[j\right]=p\left[\frac i2\right]\left[j\right]+\sum_{l=1}{j-1}\sum_{k=1}{\frac i2}dp\left[k\right]\left[l\right]dp\left[\frac i2\right]\left[j-l\right]$
$p\left[i\right]\left[j\right]=p\left[\frac i2\right]\left[j\right]+\sum_{l=1}^{j-1}dp\left[\frac i2\right]\left[j-l\right]\sum_{k=1}^{\frac i2}dp\left[k\right]\left[l\right]$
$p\left[i\right]\left[j\right]=p\left[\frac i2\right]\left[j\right]+\sum_{l=1}^{j-1}dp\left[\frac i2\right]\left[j-l\right]p\left[\frac i2\right]\left[l\right]$
也就是说p可以由上一层的p加上一层的dp与p的卷积得到,而dp可以由上一层的dp自乘得到
那么自然可以用倍增p的第一层参数的方法,用FFT优化一下,一直做到n
时间效率为$O\left(mlogmlogn\right)$
注意:将n转化为二进制,那么为一的那些位,要在倍增完以后再推一层
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
struct complex{
double x,y;
complex(double xx=0,double yy=0){x=xx;y=yy;}
complex operator +(const complex &b){return complex(x+b.x,y+b.y);}
complex operator -(const complex &b){return complex(x-b.x,y-b.y);}
complex operator *(const complex &b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}A[100010],B[100010];
const double pi=acos(-1.0);
int n,m,limit=1,cnt=0,r[100010];
int MOD;
void fft(complex *a,double type){
int i,j,k,mid;complex x,y,wn,w;
for(i=0;i<limit;i++) if(i<r[i]) swap(a[i],a[r[i]]);
for(mid=1;mid<limit;mid<<=1ll){
wn=complex(cos(pi/mid),type*sin(pi/mid));
for(j=0;j<limit;j+=(mid<<1ll)){
w=complex(1,0);
for(k=0;k<mid;k++,w=w*wn){
x=a[j+k];y=a[j+k+mid]*w;
a[j+k]=x+y;a[j+k+mid]=x-y;
}
}
}
}
int now=1,w=0,g[100010]={0},p[100010]={0},f[100010]={0};
int a1,a2,a3;
void solve1(){
int i;
for(i=0;i<=limit;i++) A[i]=B[i]=complex(0,0);
for(i=0;i<=limit;i++) A[i].x=p[i],B[i].x=g[i];
fft(A,1);fft(B,1);
for(i=0;i<=limit;i++) A[i]=A[i]*B[i];
fft(A,-1);
for(i=1;i<=m;i++) p[i]=(p[i]+(int)(A[i].x/limit+0.5)%MOD)%MOD;
for(i=0;i<=limit;i++) A[i]=complex(0,0);
for(i=0;i<=limit;i++) A[i].x=g[i];
fft(A,1);
for(i=0;i<=limit;i++) A[i]=A[i]*A[i];
fft(A,-1);
for(i=1;i<=m;i++) g[i]=(int)(A[i].x/limit+0.5)%MOD;
}
void solve2(){
int i;
for(i=0;i<=limit;i++) A[i]=B[i]=complex(0,0);
for(i=1;i<=m;i++) A[i].x=f[i],B[i].x=g[i];
fft(A,1);fft(B,1);
for(i=0;i<=limit;i++) A[i]=A[i]*B[i];
fft(A,-1);
for(i=1;i<=m;i++) g[i]=(int)(A[i].x/limit+0.5)%MOD,p[i]=(p[i]+g[i])%MOD;
}
int main(){
m=read();MOD=read();n=read();a1=read();a2=read();a3=read();
int i;
a1%=MOD;a2%=MOD;a3%=MOD;
for(i=1;i<=m;i++) g[i]=p[i]=f[i]=((((((a1*i)%MOD)*i)%MOD)+a2*i%MOD)+a3)%MOD;
while(limit<=(m<<1ll)) limit<<=1ll,cnt++;
for(i=0;i<limit;i++) r[i]=((r[i>>1ll]>>1ll)|((i&1ll)<<(cnt-1ll)));
while((now<<1ll)<=n) now<<=1ll,w++;
while(w){
w--;
solve1();//倍增
if(n&(1<<w)) solve2();//这一位应该是个奇数的,再推一层
}
printf("%lld\n",p[m]%MOD);
}
[JSOI2012][bzoj4332] 分零食 [FFT]的更多相关文章
- FFT 【JSOI2012】bzoj4332 分零食 (未解决)
很不错的一道倍增优化dp?? 第一次做这类题挺难想的 题目大意: 有n个小朋友,m块糖. 给小朋友分糖,如果一个小朋友分不到糖,那他后面的小朋友也分不到糖. 每个小朋友有一个喜悦值,有三个参数,O,S ...
- 【bzoj4332】【JSOI2012】 分零食 生成函数 FFT
我们构造$f(x)$的生成函数$G(x)$,那么显然$[x^k]G(x)=Ok^2+Sk+U$ 那么显然,答案即为$\sum_{i=1}^{n} [x^m]G^i(x)$ 我们构造答案的生成函数$F( ...
- BZOJ 4332: JSOI2012 分零食 FFT+分治
好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...
- LGP5075【JSOI2012】分零食
. 题解: 令$F$为欢乐度$f(x) = Ox^2 + Sx + U$的生成函数,常数项为$0$: 令$G(x) = \sum_{i=0}^{A} F^i (x) $ $ans = [x^M]G;$ ...
- 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)
4332: JSOI2012 分零食 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 119 Solved: 66 Description 这里是欢乐 ...
- [BZOJ 4332] [JSOI2012]分零食(DP+FFT)
[BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...
- bzoj千题计划309:bzoj4332: JSOI2012 分零食(分治+FFT)
https://www.lydsy.com/JudgeOnline/problem.php?id=4332 因为如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果. 所以设g[i][j] ...
- bzoj4332;vijos1955:JSOI2012 分零食
描述 这里是欢乐的进香河,这里是欢乐的幼儿园. 今天是2月14日,星期二.在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着.校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们.听到这个消息,所有同 ...
- BZOJ4332 JSOI2012 分零食 【倍增 + NTT】
题目链接 权限题BZOJ4332 题解 容易想到\(dp\) 设\(g[i][j]\)表示前\(i\)人分到\(j\)颗糖的所有方案的乘积之和 设\(f(x) = Ox^2 + Sx + U\) \[ ...
随机推荐
- BZOJ 1229: [USACO2008 Nov]toy 玩具
BZOJ 1229: [USACO2008 Nov]toy 玩具 标签(空格分隔): OI-BZOJ OI-三分 OI-双端队列 OI-贪心 Time Limit: 10 Sec Memory Lim ...
- Problem A: 李白打酒
Problem A: 李白打酒 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 825 Solved: 373[Submit][Status][Web ...
- systemd 中的requires, wants, before, after
man systemd.unit man systemd.service ###依赖关系和前后顺序* 依赖关系:Requires和Wants * 前后顺序:After,Before 依赖关系,前 ...
- dom事件操作例题,电子时钟,验证码,随机事件
dom事件操作 当事件发生时,可以执行js 例子: 当用户点击时,会改变<h1>的内容: <h1 onClick="this.innerHTML='文本更换'"& ...
- SyntaxHighlighter使用方法
原名:SyntaxHighlighter,是一款用于web页面的代码着色工具,可以用来着色多种语言,可以是HTML,CSS,Javascript,还可以是C,JAVA等编程语言.最早见于Yahoo的Y ...
- SpringBoot学习3:springboot整合filter
整合方式一:通过注解扫描完成 Filter 组件的注册 1.编写filter package com.bjsxt.filter; import javax.servlet.*; import java ...
- MySQL数据库 crud语句 ifnull() 创建新账户 备份数据库 一对多关系 多对多(中间表) 外键约束 自关联 子查询注意事项 DML DDL DQL mysql面试题 truncate与delete的区别
DML(data manipulation language): 它们是SELECT.UPDATE.INSERT.DELETE,就象它的名字一样,这4条命令是用来对数据库里的数据进行操作的语言 DDL ...
- jQuery入门第一天-(一个菜鸟的不正经日常)
jQuery的初步认识 菜鸟Q1:什么是jQuery? jQuery就是一个JavaScript函数库,没什么 特别的. 菜鸟Q2:jQuery能做什么?jQuery是做什么的? jQuery本身就是 ...
- http 实战练习
http 实战练习 建立httpd服务器,要求提供两个基于名称的虚拟主机: (1)www.X.com,页面文件目录为/web/vhosts/x:错误日志为/var/log/httpd/x.err,访问 ...
- Laravel 打印已执行的sql语句
打开app\Providers\AppServiceProvider.PHP,在boot方法中添加如下内容 5.2以下版本 // 先引入DB use DB; // 或者直接使用 \DB:: DB::l ...