欧拉函数之和(51nod 1239)
输入一个数N。(2 <= N <= 10^10)
输出S(n) Mod 1000000007的结果。
5
10
#include<cstdio>
#include<iostream>
#define N 2000010
#define ha 2333333
#define mod 1000000007
#define ni 500000004
#define lon unsigned long long
using namespace std;
int phi[N],prime[N],cnt,tot,head[N],vis[N];
lon n,sum[N];
struct node{int pre;lon x,v;}e[N];
void add(int u,lon v,lon x){
e[++cnt].v=v;e[cnt].x=x;e[cnt].pre=head[u];head[u]=cnt;
}
void get_prime(){
phi[]=;
for(int i=;i<N;i++){
if(!vis[i]) vis[i]=,prime[++tot]=i,phi[i]=i-;
for(int j=;j<=tot&&i*prime[j]<N;j++){
vis[i*prime[j]]=;
phi[i*prime[j]]=phi[i]*(prime[j]-);
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for(int i=;i<N;i++) sum[i]=(sum[i-]+phi[i])%mod;
}
lon solve(lon x){
if(x<N) return sum[x];
lon ans=,k=x%ha,last;
for(int i=head[k];i;i=e[i].pre)
if(e[i].v==x) return e[i].x;
for(lon i=;i<=x;i=last+){
last=x/(x/i);
ans=(ans+(last-i+)%mod*solve(x/i)%mod)%mod;
}
ans=((x%mod*(x+)%mod)%mod*ni%mod-ans+mod)%mod;
add(k,x,ans);
return ans;
}
int main(){
get_prime();
cin>>n;
cout<<solve(n);
return ;
}
欧拉函数之和(51nod 1239)的更多相关文章
- [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1Nμ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...
- 51 NOD 1239 欧拉函数之和(杜教筛)
1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...
- 51nod1239 欧拉函数之和
跟1244差不多. //由于(x+1)没有先mod一下一直WA三个点我... //由于(x+1)没有先mod一下一直WA三个点我... #include<cstdio> #include& ...
- 51nod 1239 欧拉函数之和(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...
- 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛
题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...
- 【51Nod 1239】欧拉函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 还是模板题. 杜教筛:\[S(n)=\frac{n(n+1)}{2 ...
- 【51nod】1239 欧拉函数之和 杜教筛
[题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...
- 【51nod】1239 欧拉函数之和
题解 写完上一道就开始写这个,大体上就是代码改了改而已= = 好吧,再推一下式子! \(\sum_{i = 1}^{n}i = \sum_{i = 1}^{n}\sum_{d | i}\phi(d) ...
- 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...
随机推荐
- overloading and overriding
What is the difference between method overloading and method overriding in Java? Differences between ...
- Hibernate异常:identifier of an instance of 错误
今天写项目时,在使用hibernate封装的插入方法时,由于需要同时保存多个数据,导致出现identifier of an instance of 如下代码 :(由于最大最小分数不同所以需要插入两条数 ...
- WinForm中Timer倒计时
添加一个Timer控件: 在初始化代码中 public Form1() { InitializeComponent(); button_Read.Enabled = false; button_Sta ...
- Bootstrap历练实例:默认的面板(Panels)
Bootstrap 面板(Panels) 本章将讲解 Bootstrap 面板(Panels).面板组件用于把 DOM 组件插入到一个盒子中.创建一个基本的面板,只需要向 <div> 元素 ...
- kvm笔记
1 virt-manager安装虚拟机无法使用键盘解决 今天远程用VNC登录服务器安装虚拟机,结果使用virt-manager安装虚拟机后在初始阶段无法使用键盘设置,这不雪崩了,后来来回试,找到了原因 ...
- Codevs1033 蚯蚓的游戏
题目描述 Description 在一块梯形田地上,一群蚯蚓在做收集食物游戏.蚯蚓们把梯形田地上的食物堆积整理如下: a(1,1) a(1,2)…a(1,m) a(2,1) a(2,2) a(2 ...
- 【dp】守望者的逃离
妙 题目描述 恶魔猎手尤迪安野心勃勃,他背着了暗夜精灵,率领深藏在海底的娜迦族企图叛变.守望者在与尤迪安的交锋中遭遇了围杀,被困在一个荒芜的大岛上.为了杀死守望者,尤迪安开始对这个荒岛施咒,这座岛很快 ...
- 《Spring源码深度解析》第三章 默认标签的解析
上一章提到了,默认标签和自定义标签要分开解析.本章重点介绍默认标签的解析.在 DefaultBeanDefinitionDocumentReader 中: private void parseDefa ...
- centos 7 安装WordPress的参考博文
安装方法: https://www.cnblogs.com/flankershen/p/7476415.html 安装完,测试不成功的解决办法: https://blog.csdn.net/u0104 ...
- JAVA基础篇—Servlet小结
一.get请求和post请求的区别: 1.get请求是通过url传递参数,post请求是通过请求体传递参数的 2.get请求最多允许传递255个字符,对长度有限制,所以数据比较大的时候我们使用post ...