Description

 
 Stacking Boxes 

Background

Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.

The Problem

Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box  (length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes  such that each box  nests in box  (  .

A box D = (  ) nests in a box E = (  ) if there is some rearrangement of the  such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).

For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.

Formally, we define nesting as follows: box D = (  ) nests in box E = (  ) if there is a permutation  of such that (  ) ``fits'' in (  ) i.e., if  for all  .

The Input

The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)

This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The  line in the sequence (  ) gives the measurements for the  box.

There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).

In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.

The Output

For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.

The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).

If there is more than one longest nesting string then any one of them can be output.

Sample Input

5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9

Sample Output

5
3 1 2 4 5
4
7 2 5 6 题目大意:有m维的箱子,严格递增最多能嵌套多少个箱子。
解题思路:对每个箱子的属性sort下,再对sort下,求最长上升子序列,输出个数跟路径。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn=;
const int maxm=;
const int INF=;
int n,m;
int pre[maxn],dp[maxn]; struct point
{
int id,f[maxm];
}p[maxn]; void read_point(int i)
{
int j;p[i].id=i;
for(j=;j<=m;j++)
scanf("%d",&p[i].f[j]);
sort(p[i].f+,p[i].f+m+);
} bool mycomp(const point a,const point b)
{
if(a.f[]!=b.f[])
return a.f[]<b.f[];
return true;
}
bool judge(int j,int i)
{
for(int k=;k<=m;k++)
if(p[i].f[k]<=p[j].f[k])
return false;
return true;
}
void printf_ans(int d,int i)
{
if(d==) return;
int u=pre[i];
printf_ans(d-,u);
printf(d==?"%d":" %d",p[i].id);
}
int main()
{
int i,j,ansm,ansi;
while(~scanf("%d%d",&n,&m))
{
for(i=;i<=n;i++) read_point(i);
sort(p+,p+n+,mycomp);
memset(p[].f,,sizeof(p[].f));
memset(pre,-,sizeof(pre));
memset(dp,,sizeof(dp));
for(i=;i<=n;i++)
{
for(j=;j<i;j++)
if(judge(j,i) && dp[i]<dp[j]+)
{
dp[i]=dp[j]+;
pre[i]=j;
}
}
ansm=-INF;
for(i=;i<=n;i++)
if(ansm<dp[i])
{
ansm=dp[i];ansi=i;
}
printf("%d\n",ansm);
printf_ans(ansm,ansi);
printf("\n");
}
return ;
}
 

uva 103 Stacking Boxes(最长上升子序列)的更多相关文章

  1. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

  2. uva 103 Stacking Boxes(DAG)

    题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...

  3. UVA 103 Stacking Boxes n维最长上升子序列

    题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...

  4. UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)

     Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simple in one or t ...

  5. UVa 103 - Stacking Boxes(dp求解)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  6. UVa 103 - Stacking Boxes (LIS,打印路径)

    链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn},  对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...

  7. UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索

    题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...

  8. UVa 103 - Stacking Boxes

    题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...

  9. UVA 103 Stacking Boxes --LIS

    实际上是一个扩展维度的矩形嵌套问题. 一个物体能嵌入另一个物体中,当且仅当这个物体的所有维度的长度都小于另外一个(本题是小于等于),又因为可以旋转等变换,所以干脆将每个箱子的边从小到大排序,以便于判断 ...

随机推荐

  1. iOS项目工程及目录结构

    做过一些iOS的项目,不同项目的沉淀没有积累到一起,目录的管理都在后期随着人员的增加越来越混乱,因此在这里做一些梳理,希望达到两个目的. 一套相对通用的目录结构,作为后续项目的模版. 积累相应的基础库 ...

  2. Roman Numeral Converter-freecodecamp算法题目

    Roman Numeral Converter 1.要求 将给定的数字转换成罗马数字 所有返回的罗马数字都应该是大写形式 2.思路 分别定义个位.十位.百位.千位的对应罗马数字的数组 用Math.fl ...

  3. Python + Bottle + 谷歌搜索Api 实现简单搜索引擎

    1.运行环境 python3 centos7 2.Bottle的使用 使用bottle主要是因为它仅用python自带的库即可实现对web的搭建. bottle源码分析 bottle使用教程 3.代码 ...

  4. Linux基础学习-LVM逻辑卷管理遇到的问题

    LVM学习逻辑卷管理创建逻辑卷遇到的问题 1 实验环境 系统 内核 发行版本 CentOS 2.6.32-754.2.1.el6.x86_64 CentOS release 6.10 (Final) ...

  5. laravel中使用PHPQuery实现网页采集

    由于没有PHPQuery的composer包安装所以需要我们手动在我们的laravel项目中安装加载PHPQuery,这里需要设置laravel的autoload->class map. 1.首 ...

  6. JAVA基础篇—文件上传下载

    /index.jsp <%@ page language="java" contentType="text/html; charset=UTF-8" pa ...

  7. Aizu - 1386 Starting a Scenic Railroad Service (思维乱搞)

    给你n个区间,求: 1:最多有多少区间与同一个区间相交. 2:相交部分的最大区间数目. Sample Input 1 4 1 3 1 3 3 6 3 6 Sample Output 1 2 2 Sam ...

  8. 【12】Firefox 快捷键大全及更改和定制快捷键的方法

    [12]Firefox 快捷键大全及更改和定制快捷键的方法 答: Firefox 本身没有提供更改和定制快捷键的选项,若有需要,请安装扩展 Keyconfig 来解决.  安装地址如下: Keycon ...

  9. loj2005 「SDOI2017」相关分析

    鬼畜线段树--Orz Capella #include <iostream> #include <cstdio> using namespace std; int n, m, ...

  10. luogu1578 奶牛浴场 枚举点最大子矩阵

    建议看看王知昆dalao的论文,讲得很好 #include <algorithm> #include <iostream> #include <cstring> # ...