P1132 数字生成游戏

题目描述

小明完成了这样一个数字生成游戏,对于一个不包含0的数字s来说,有以下3种生成新的数的规则:

  1. 将s的任意两位对换生成新的数字,例如143可以生成314,413,134;

  2. 将s的任意一位删除生成新的数字,例如143可以生成14,13,43

  3. 在s的相邻两位之间s[i],s[i + 1]之间插入一个数字x,x需要满足s[i] < x < s[i + 1]。例如143可以生成1243,1343,但是不能生成1143,1543等。

现在小明想知道,在这个生成法则下,从s开始,每次生成一个数,可以用然后用新生成的数生成另外一个数,不断生成直到生成t至少需要多少次生成操作。

另外,小明给规则3又加了一个限制,即生成数的位数不能超过初始数s的位数。若s是143,那么1243与1343都是无法生成的;若s为1443,那么可以将s删除4变为143,再生成1243或1343。

输入输出格式

输入格式:

输入的第一行包含1个正整数,为初始数字s。

第2行包含一个正整数m,为询问个数。

接下来m行,每行一个整数t(t不包含0),表示询问从s开始不断生成数字到t最少要进行多少次操作。任两个询问独立,即上一个询问生成过的数到下一个询问都不存在,只剩下初始数字s。

输出格式:

输出包括m行,每行一个正整数,对每个询问输出最少操作数,如果无论。

输入输出样例

输入样例#1:

143
3
134
133
32
输出样例#1:

1
-1
4

说明

143 -> 134

133无法得到

143 -> 13 -> 123 -> 23 -> 32

对于20%的数据,s < 100;

对于40%的数据,s < 1000;

对于40%的数据,m < 10;

对于60%的数据,s < 10000;

对于100%的数据,s < 100000,m ≤ 50000。

/*
bfs,模拟三种操作
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
int n,m;
int s[],l1,h,f[];
bool vis[];
struct node{
int x,step;
}cur,nxt;
int bfs(){
memset(vis,,sizeof(vis));
cur.x=n;cur.step=;
vis[n]=;
queue<node>q;
q.push(cur);
while(!q.empty()){
cur=q.front();q.pop();
int num=cur.x;
int ss[],l2=;
while(num){
l2=l2+;
ss[l2]=num%;
num/=;
}//把即将要转换的数变成数组
for(int i=;i<=l2;i++){
for(int j=i+;j<=l2;j++){//枚举交换的两个数
swap(ss[i],ss[j]);
int y=;//记录更改后的数字
for(int k=l2;k>=;k--)
y=y*+ss[k];
nxt.step=cur.step+;
nxt.x=y;
if(!vis[nxt.x]){
f[nxt.x]=nxt.step;
q.push(nxt);
vis[nxt.x]=;
}
swap(ss[i],ss[j]);
}
}
for(int i=;i<=l2;i++){//枚举删除某一位数字
int y=;
for(int j=l2;j>=;j--){
if(j==i)continue;
y=y*+ss[j];
}
nxt.step=cur.step+;
nxt.x=y;
if(!vis[nxt.x]){
f[nxt.x]=nxt.step;
q.push(nxt);
vis[nxt.x]=;
}
}
if(l2<l1){//可以插数字
for(int i=;i<=l2-;i++){//枚举插在谁的后面
for(int j=ss[i]-;j>ss[i+];j--){//枚举插什么数字
int y=;
/*for(int k=l2,l=1;k>=1;k--,l++){
y=y*10+ss[k];
if(l==i)
y=y*10+j;
}*/
for(int k=l2;k>i;k--)
y=y*+ss[k];
y=y*+j;
for(int k=i;k>=;k--)
y=y*+ss[k];
nxt.x=y;
nxt.step=cur.step+;
if(!vis[nxt.x]){
f[nxt.x]=nxt.step;
q.push(nxt);
vis[nxt.x]=;
}
}
}
}
}
return -;
}
int main(){
memset(f,-,sizeof(f));
scanf("%d%d",&n,&m);
int v=n;f[n]=;
while(v){s[++l1]=v%;v/=;}
int h;bfs();
for(int i=;i<=m;i++){
scanf("%d",&h);
printf("%d\n",f[h]);
}
return ;
}

洛谷P1132 数字生成游戏的更多相关文章

  1. 洛谷P1118 数字三角形游戏

    洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直 ...

  2. P1132 数字生成游戏

    题目请见:传送门 以下为题解,直接从洛谷上搬过来的,还专门改了markdown,(汗) 宽搜 with 一些技巧 由于查询量很大,所以要预先处理所有答案 预处理当然是用BFS,并同时进行delete, ...

  3. 洛谷 P1118 数字三角形游戏 Label:dfs

    题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直到只剩下一个数字位置.下面是一 ...

  4. 洛谷P1274-魔术数字游戏

    Problem 洛谷P1274-魔术数字游戏 Accept: 118    Submit: 243Time Limit: 1000 mSec    Memory Limit : 128MB Probl ...

  5. 洛谷P1553 数字翻转(升级版)

    题目链接 https://www.luogu.org/problemnew/show/P1553 题目描述 给定一个数,请将该数各个位上数字反转得到一个新数. 这次与NOIp2011普及组第一题不同的 ...

  6. 【u109】数字生成游戏(gen)

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 小明完成了这样一个数字生成游戏,对于一个不包含0的数字s来说,有以下3种生成新的数的规则: 1. 将s ...

  7. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  8. 洛谷 P5660 数字游戏 & [NOIP2019普及组]

    传送门 洛谷改域名了QAQ 解题思路 没什么好说的,一道红题,本不想发这篇博客 ,但还是尊重一下CCF吧QAQ,怎么说也是第一年CSP呢! 用getchar一个个读入.判断.累加,最后输出即可. 不过 ...

  9. 卡特兰数 洛谷P1641 [SCOI2010]生成字符串

    卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...

随机推荐

  1. log4j 2 入门实例(1)

    本文介绍log4j的基本概念和将日志输出到控制台的例子. 参考文章: http://www.jianshu.com/p/464058bdbc76 http://www.hankcs.com/progr ...

  2. Java for LeetCode 132 Palindrome Partitioning II

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  3. 【Leetcode-easy】Longest Common Prefix

    思路:每次从字符数组中读取两个字符串比较.需要注意输入字符串为空,等细节. public String longestCommonPrefix(String[] strs) { if(strs==nu ...

  4. POJ2774 Long Long Message —— 后缀数组 两字符串的最长公共子串

    题目链接:https://vjudge.net/problem/POJ-2774 Long Long Message Time Limit: 4000MS   Memory Limit: 131072 ...

  5. 0-mybatis目录

    mybatis 第一天: 对原生态jdbc程序(单独使用jdbc开发)问题总结 框架原理 入门程序 用户的增.删.改.查 开发dao两种方法: 原始dao开发方法(程序需要编写dao接口和dao实现类 ...

  6. 检测 iOS 系统网络权限被关闭

    背景 一直都有用户反馈无法正常联网的问题,经过定位,发现很大一部分用户是因为网络权限被系统关闭,经过资料搜集和排除发现根本原因是: 第一次打开 app 不能访问网络,无任何提示 第一次打开 app 直 ...

  7. L85

    Surgical Never Events Happen Nevertheless Surgeons call them "never events", because they ...

  8. hdu-5818 Joint Stacks(模拟)

    题目链接: Joint Stacks Time Limit: 8000/4000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Othe ...

  9. BZOJ2726:任务安排(DP+斜率优化+二分)

    机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务 ...

  10. 如何加快建 index 索引 的时间

    朋友在500w的表上建索引,半个小时都没有结束.所以就讨论如何提速. 一.先来看一下创建索引要做哪些操作:1. 把index key的data 读到内存==>如果data 没在db_cache ...