转自https://www.cnblogs.com/futurehau/p/6524396.html

Annoy是高维空间求近似最近邻的一个开源库。

Annoy构建一棵二叉树,查询时间为O(logn)。

Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分。

如图所示,图中灰色线是连接两个点,超平面是加粗的黑线。按照这个方法在每个子集上迭代进行划分。

依此类推,直到每个集合最多剩余k个点,下图是一个k = 10 的情况。

相应的完整二叉树结构:

随机投影森林。

一个思想依据是:在原空间中相邻的点,在树结构上也表现出相互靠近的特点,也就是说,如果两个点在空间上相互靠近,那么他们很可能被树结构划分到一起。

如果要在空间中查找临近点,我们可以在这个二叉树中搜索。上图中每个节点用超平面来定义,所以我们可以计算出该节点往哪个方向遍历,搜索时间 log n

如上图,我们找到了七个最近邻,但是假如我们想找到更多的最近邻怎么办?有些最近邻是在我们遍历的叶子节点的外边的。

技巧1:使用优先队列

如果一个划分的两边“靠得足够近”(量化方式在后面介绍),我们就两边都遍历。这样就不只是遍历一个节点的一边,我们将遍历更多的点

我们可以设置一个阈值,用来表示是否愿意搜索划分“错”的一遍。如果设置为0,我们将总是遍历“对”的一片。但是如果设置成0.5,就按照上面的搜索路径。

这个技巧实际上是利用优先级队列,依据两边的最大距离。好处是我们能够设置比0大的阈值,逐渐增加搜索范围。

技巧2:构建一个森林

我们能够用一个优先级队列,同时搜索所有的树。这样有另外一个好处,搜索会聚焦到那些与已知点靠得最近的那些树——能够把距离最远的空间划分出去

每棵树都包含所有的点,所以当我们搜索多棵树的时候,将找到多棵树上的多个点。如果我们把所有的搜索结果的叶子节点都合在一起,那么得到的最近邻就非常符合要求。

依照上述方法,我们找到一个近邻的集合,接下来就是计算所有的距离和对这些点进行排序,找到最近的k个点。

很明显,我们会丢掉一些最近的点,这也是为什么叫近似最近邻的原因。

Annoy在实际使用的时候,提供了一种机制可以调整(搜索k),你能够根据它来权衡性能(时间)和准确度(质量)。

tips:

1.距离计算,采用归一化的欧氏距离:vectors = sqrt(2-2*cos(u, v))

2.向量维度较小(<100),即使维度到达1000变现也不错

3.内存占用小

4.索引创建与查找分离(特别是一旦树已经创建,就不能添加更多项)

5.有两个参数可以用来调节Annoy 树的数量n_trees和搜索期间检查的节点数量search_k

  n_trees在构建时提供,并影响构建时间和索引大小。 较大的值将给出更准确的结果,但更大的索引。

  search_k在运行时提供,并影响搜索性能。 较大的值将给出更准确的结果,但将需要更长的时间返回。

如果不提供search_k,它将默认为n *
n_trees,其中n是近似最近邻的数目。
否则,search_k和n_tree大致是独立的,即如果search_k保持不变,n_tree的值不会影响搜索时间,反之亦然。
基本上,建议在可用负载量的情况下尽可能大地设置n_trees,并且考虑到查询的时间限制,建议将search_k设置为尽可能大。

近似最近邻算法-annoy解析的更多相关文章

  1. Annoy解析

    Annoy是高维空间求近似最近邻的一个开源库. Annoy构建一棵二叉树,查询时间为O(logn). Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分. 如图所示,图中 ...

  2. JS-常考算法题解析

    常考算法题解析 这一章节依托于上一章节的内容,毕竟了解了数据结构我们才能写出更好的算法. 对于大部分公司的面试来说,排序的内容已经足以应付了,由此为了更好的符合大众需求,排序的内容是最多的.当然如果你 ...

  3. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  4. 使用C语言实现二维,三维绘图算法(2)-解析曲面的显示

    使用C语言实现二维,三维绘图算法(2)-解析曲面的显示 ---- 引言---- 每次使用OpenGL或DirectX写三维程序的时候, 都有一种隔靴搔痒的感觉, 对于内部的三维算法的实现不甚了解. 其 ...

  5. KNN(k-nearest neighbor的缩写)又叫最近邻算法

    KNN(k-nearest neighbor的缩写)又叫最近邻算法 机器学习笔记--KNN算法1 前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的 ...

  6. 【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)

    K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...

  7. 最近邻算法(KNN)

    最近邻算法: 1.什么是最近邻是什么? kNN算法全程是k-最近邻算法(k-Nearest Neighbor) kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数数以一个类型别 ...

  8. Adaboost 算法实例解析

    Adaboost 算法实例解析 1 Adaboost的原理 1.1 Adaboost基本介绍 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由 ...

  9. 2. Attention Is All You Need(Transformer)算法原理解析

    1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...

随机推荐

  1. PLSQL 设置 里面timestamp显示的格式

    转自: https://blog.csdn.net/dietime1943/article/details/52672813# PL/SQL下timestamp日期显示格式问题 现象: 日期检索出来显 ...

  2. ubuntu18.04 安装idea

    首先从官网下载idea:IntelliJ IDEA    (在安装IDEA前应先安装jdk环境) 得到ideaIU-2019.2.4.tar.gz 将安装包移动到/usr/local,这样可以让所有用 ...

  3. c# 方法成员

  4. Django :中间 件与csrf

    一.中间件 什么是中间件 中间件有什么用 自定义中间件 中间件应用场景 二.csrf csrf token跨站请求伪造 一.中间件 1.什么是中间件 中间件顾名思义,是介于request与respon ...

  5. 第一周助教小结——发布作业&线上答疑

    第一周助教小结 助教博客:https://www.cnblogs.com/jason5689/ 本周点评数目:0份 由于发布的作业还未截至,第一次的作业点评还没开始进行,就描述一下评论博客前的感受吧 ...

  6. JAVA HASH学习

    就HASH的目的来说,是为了解决内容摘要与快速索引的问题:而其算法也比较多样. JDK实现中,对String类的hashcode()进行了重载: public int hashCode() { int ...

  7. .NET总结一

    因为考试的原因,总结一致拖到现在才写,但必须做一个总结,没有总结相当于没有学过.VB.NET主要是用面向对象的基础来进行程序设计,虽然之前总是能够听到面向对象,但从未真正接触面向对象技术,从VB.NE ...

  8. mysql - 引擎与锁的概念( 基础 )

    MySQL - 关系型数据库  - innodb : - 支持事务 事务的特征 : - 原子性:事务是最小单位,不可再分,事务执行的过程中,要么同时失败,要么同时成功,如,A跟B转账,一旦有一方出问题 ...

  9. django rest framework框架中都有那些组件

    1.权限 2.认证 3.访问频率 4.序列化 5.路由 6.视图 7.分页 8.解析器 9.渲染器 规定页面显示的效果(无用) https://www.cnblogs.com/Rivend/p/118 ...

  10. js 定义数组转json

    var msgData = {} msgData["url"] = openUrl msgData["courseName"] = val.name JSON. ...