P4295 [SCOI2003]严格N元树 DP
思路:DP
提交:\(5\)次
错因:2次高精写错(我太菜了),2次写错特判
题解:
设\(f[i]\)表示深度\(\leq i\)的严格\(n\)元树的数目,有
\]
即一个点,对于每一个孩子深度都可以是\(1\)到\(i-1\)的严格\(n\)元树,或是仅仅一个点(作为根)。
所以最后的答案是\(f[i]-f[i-1]\)
需要高精。
#include<cstdio>
#include<iostream>
#include<cstring>
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0;
register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=10010;
int n,d,a[N],b[N],f[N],mem[N],sza,szb;
inline void print(int* f,int len) {
for(R i=len;i;--i) cout<<f[i]; cout<<endl;
}
inline void mul(int a[N],int b[N],int& sza,int szb) {
R tmp[N]; memset(tmp,0,sizeof(tmp));
for(R i=1;i<=sza;++i) for(R j=1;j<=szb;++j)
tmp[i+j-1]+=a[i]*b[j];
sza+=szb-1; for(R i=1;i<=sza;++i) tmp[i+1]+=tmp[i]/10,tmp[i]%=10;
while(tmp[sza+1]) ++sza,tmp[sza+1]+=tmp[sza]/10,tmp[sza]%=10;
memcpy(a,tmp,sizeof(int)*(sza+3));
}
inline void main() {
g(n),g(d); if(d==0) return (void) puts("1"); f[1]=1,sza=1;
for(R i=1;i<=d;++i) { memcpy(mem,f,sizeof(int)*(sza+3)),szb=sza;
for(R j=2;j<=n;++j) mul(f,mem,sza,szb); ++f[1];
for(R j=1;j<=sza;++j) f[j+1]+=f[j]/10,f[j]%=10;
while(f[sza+1]) ++sza,f[sza+1]+=f[sza]/10,f[sza]%=10;
} for(R i=1;i<=sza;++i) f[i]-=mem[i];
for(R i=1;i<=sza;++i) if(f[i]<0) f[i]+=10,--f[i+1];
while(!f[sza]) --sza; while(sza) printf("%d",f[sza]),--sza;
}
} signed main() {Luitaryi::main(); return 0;}
2019.08.16
84
P4295 [SCOI2003]严格N元树 DP的更多相关文章
- bzoj1089 [SCOI2003]严格n元树(dp+高精)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1899 Solved: 954[Submit][Statu ...
- BZOJ1089:[SCOI2003]严格n元树(DP,高精度)
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- bzoj 1089 [SCOI2003]严格n元树(DP+高精度)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1250 Solved: 621[Submit][Statu ...
- BZOJ 1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1591 Solved: 795[Submit][Statu ...
- BZOJ1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 762 Solved: 387[Submit][Status ...
- 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)
[BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...
- SCOI2003 严格N元树
SCOI2003 严格N元树 Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的 ...
- BZOJ1089 [SCOI2003]严格n元树 【dp + 高精】
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- bzoj 1089: [SCOI2003]严格n元树【dp+高精】
设f[i]为深度为i的n元树数目,s为f的前缀和 s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种 写个高精就行了,好久没写WA了好几次-- #incl ...
随机推荐
- go 函数闭包
Go 函数可以是闭包的.闭包是一个函数值,它来自函数体的外部的变量引用. 函数可以对这个引用值进行访问和赋值:换句话说这个函数被“绑定”在这个变量上. 例如,函数 adder 返回一个闭包.每个闭包都 ...
- ASM实例修改SYS密码
修改ASM实例中SYS用户密码 How To Change ASM SYS PASSWORD ? (文档 ID 452076.1) Oracle Database - Enterprise Editi ...
- (四)CXF之处理Map类型的数据
一.需求描述 正常来讲webService可以处理Java 数据类型.JavaBean.List等,但是却不能处理Map数据类型.本章讲解如何使用适配器来使得web服务可以处理Map数据类型. 流程: ...
- (三)CXF之处理输入参数与输出类型为复杂类型的webService服务
一.需求 调用webService服务,把用户名和密码封装为用户对象作为参数,返回该用户所用友的角色列表. 二.发布服务 2.1 编写服务接口 @WebService public interface ...
- angular 源码 <一> rotuerLinkActive
这几篇,查看angular 源码. rotuerLinkActive 是路由的样式设置. 它的值是 css 的一个类.或者几个类. 主要代码如下 @Input() set routerLinkActi ...
- 如何把Windows主机中的文件拉到centOS虚拟机中
如何把Windows主机中的文件拉到centOS虚拟机中 2017年02月19日 22:19:12 Ariel_lin2017 阅读数:6023 标签: vmware tools共享文件 之前写了 ...
- express 和 vue-cli 的博客网站
已经上传到github地址:https://github.com/13476075014/node-vue/tree/master/mynodeproject/15.TimeBlog # 个人博客系统 ...
- Apache Log View 5.37破解笔记
i春秋作家:Sp4ce 之前说过要分享这个日志分析工具[记一次简单的攻击日志分析]的破解版,在破解的路上踩了几个坑,记录分享下. 0×00程序概述 原程序 大小: 2283672 字节文件版本: 5. ...
- 阿里高级架构师教你使用Spring JMS处理消息事务源码案例
消费者在接收JMS异步消息的过程中会发生执行错误,这可能会导致信息的丢失.该源码展示如何使用本地事务解决这个问题.这种解决方案可能会导致在某些情况下消息的重复(例如,当它会将信息储存到数据库,然后监听 ...
- JAVA面试核心教程|Java面试基础知识点总结
Java中的原始数据类型都有哪些,它们的大小及对应的封装类是什么? byte——1 byte——Byte short——2 bytes——Short int——4 bytes——Integer lon ...