题意

链接

定义 $f(x)$ 为满足以下条件的有序二元组 $(a, b)$ 的方案数(即 $(a, b)$ 与 $(b, a)$ 被认为是不同的方案):

  • $x= ab$
  • $a$ 和 $b$ 均无平方因子(即因子中没有除1之外的完全平方数)

求 $\displaystyle \sum_{i=1}^nf(i), 1 \leq n\leq 2 \times 10^7$.

分析

显然,$f(n)$ 是积性函数,考虑线性筛。

  1. 当 $x$为素数时, $f(x)=2$,即 $(1,x)$ 和 $(x,1)$;
  2. 当 $x$ 的最小质因子为 $p$,且 $p \nmid \frac{x}{p}$ 时,$f(x) = f(p)f(\frac{x}{p}) = 2f(\frac{x}{p})$;
  3. 当 $x$ 的最小的质因数为 $p$,且 $p \mid \frac{x}{p}$
    • 如果 $p \mid \frac{x}{p^2}$,那么 $x$ 中的 $p$ 的指数至少为3,即不管如何划分 $(a, b)$,两个数中一定有一个数其 $p$ 的指数大于等于2,即不存在合法的方案
    • 否则, $x$中 $p$ 的指数就为2,把这两个 $p$ 分别分给 $a$ 和 $b$,剩余的 $\frac{x}{p^2}$就是一个子问题,即 $f(x) = f(\frac{x}{p^2}) = f(\frac{x}{p})f(\frac{1}{p}) = f(\frac{x}{p})/2$
#include<bits/stdc++.h>
using namespace std; const int maxn = 2e7 + ;
int n;
int vis[maxn], primes[maxn], primeCnt;
int f[maxn], s[maxn]; //f(i)的前缀和 void seive()
{
f[] = ;
for(int i = ;i <= maxn;i++)
{
if(!vis[i])
{
primes[++primeCnt] = i;
f[i] = ;
}
for(int j=;j <= primeCnt && (long long)i * primes[j] <= maxn;j++)
{
vis[i *primes[j]] = true;
if(i % primes[j] == )
{
f[i *primes[j]] = (i / primes[j] % primes[j] == )? : f[i/primes[j]];
break;
}
else f[i * primes[j]] = f[i] * ;
}
}
} int main()
{
seive();
for(int i = ;i <= maxn;i++) s[i] = s[i-]+f[i]; int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
printf("%d\n", s[n]);
}
}

参考链接:https://oi.men.ci/jsk-30999/#%D0%B4%D0%B0%D0%BB%D0%B5%D0%B5

2018 南京网络预赛Sum - 线性筛的更多相关文章

  1. 2018 南京网络预赛Sum ——莫比乌斯反演

    题意 设 $f(n)$ 为 $n=ab$ 的方案数,其中 $a,b$ 为无平方因子数.求 $\displaystyle  \sum_{i=1}^nf(i)$,$n \leq 2e7$. 分析 显然,可 ...

  2. 2018 南京网络预赛Sum - 离线分段打表

    题意 设 $f(n)$ 为 $n=ab$ 的方案数,其中 $a,b$ 为无平方因子数. 例如,$f(6)=4$,因为 $6 = 1 \times 6 = 2 \times 3 = 3 \times 2 ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)

    题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...

  4. 计蒜客 30999 - Sum - [找规律+线性筛][2018ICPC南京网络预赛J题]

    题目链接:https://nanti.jisuanke.com/t/30999 样例输入258 样例输出814 题意: squarefree数是指不含有完全平方数( 1 除外)因子的数, 现在一个数字 ...

  5. ACM-ICPC 2018 南京赛区网络预赛 Sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  6. ACM-ICPC 2018 南京赛区网络预赛Sum,线性筛处理积性函数

    SUM 题意:f(n)是n可以拆成多少组n=a*b,a和b都是不包含平方因子的方案数目,对于a!=b,n=a*b和n=b*a算两种方案,求∑i=1nf(i) 首先我们可以知道,n=1时f(1)=1, ...

  7. 2018 南京预选赛 J Sum ( 欧拉素数筛 、Square-free Number、DP )

    题目链接 题意 : 定义不能被平方数整除的数为 Square-free Number 定义 F(i) = 有几对不同的 a 和 b 使得 i = a * b 且 a .b 都是 Square-free ...

  8. ACM-ICPC 2018 南京网络赛

    题目顺序:A C E G I J L A. An Olympian Math Problem 打表,找规律,发现答案为n-1 C. GDY 题意: m张卡片,标号1-13: n个玩家,标号1-n:每个 ...

  9. 2018南京网络赛 - Skr 回文树

    题意:求本质不同的回文串(大整数)的数字和 由回文树的性质可知贡献只在首次进入某个新节点时产生 那么只需由pos和len算出距离把左边右边删掉再算好base重复\(O(n)\)次即可 位移那段写的略微 ...

随机推荐

  1. SQL常用语句简单

    数据库脚本 USE [Test] GO /****** Object: Table [dbo].[Class] Script Date: 2017/6/29 13:17:14 ******/ SET ...

  2. PHP之即点即改

    html: <td data-hide="1200" class="px12" id ="<?php echo $v['g_id'];?& ...

  3. Python--字典的一些用法dict.items()

    1.dict.items() 例子1: 以列表返回可遍历的(键, 值) 元组数组. dict = {'Name': 'Runoob', 'Age': 7} print ("Value : % ...

  4. 跳转语句 break;continue; return; goto 区别用法

    C语言是按顺序执行语句的语言——一个接一个.即使它有条件语句或循环语句,程序的流程也是自上而下的.没有顺序流的随机跳转或跳转.但我们的程序是为了满足任何现实世界的需求,一个接一个地执行永远不会很直接. ...

  5. win7+cuda+anaconda python+tensorflow-gpu+keras安装成功版本匹配汇总

    win7+cuda+anaconda python+tensorflow-gpu+keras安装成功版本匹配汇总 2019-09-20 15:06:03 wyx100 阅读数 38更多 分类专栏: M ...

  6. (二十三)JSP指令

    一.JSP指令 1.1 JSP指令 JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分 1.2 在JSP 2.0规范中共 ...

  7. (十五)Hibernate中的多表操作(5):双向多对多

    Hibernate的双向关联. 对象之间可以相互读取.        双向只针对读取的操作.对于增.删除.改的操作没有任何影响. 案例 : 实现双向多对多 MenuBean.java package ...

  8. JAVA的转义字符

    一.常见的转义字符 转移字符对应的英文是escape character  , 转义字符串(Escape Sequence) 字母前面加上捺斜线"\"来表示常见的那些不能显示的AS ...

  9. 数据库与MySQL进阶(4)

    1,事务 事务指的是满足 ACID 特性的一组操作,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚. 1.1 ACID四大特性 原子性(Atomicity) 事务被视为不 ...

  10. opencv-02--图像的邻域操作

    图像的邻域操作 很多时候,我们对图像处理时,要考虑它的邻域,比如3*3是我们常用的,这在图像滤波.去噪中最为常见,下面我们介绍如果在一次图像遍历过程中进行邻域的运算. 下面我们进行一个简单的滤波操作, ...