考试的时候推出来了,但是忘了 $exgcd$ 咋求,成功爆蛋~

这里给出一个求最小正整数解的模板:

ll solve(ll A,ll B,ll C)
{
ll x,y,g,b,ans;
gcd = exgcd(A,B,x,y);
if(C%gcd!=0) return -1;
x*=C/gcd,B/=gcd;
if(B<0) B=-B;
ans=x%B;
if(ans<=0) ans+=B;
return ans;
}

大概就是这样.

说一下题:

可以将题目转化成求 $\frac{ans(ans+1)}{2}\mod n=0$ 的最小 $ans$.
将式子转化一下,即 $ans(ans+1)=2n\times y$,其中 $y$ 是个整数.
易得 $ans$ 与 $ans+1$ 是互质的,所以 $2n$ 中每一种不同的质因子只能贡献给 $ans,ans+1$ 中的一个.
而 $10^{12}$ 以内的数字最多只会有不到十多个本质不同的质因子,所以可以枚举子集.
考虑枚举出 $A$ 和 $B$,令 $A\times x=ans,B\times y=ans+1$.
则需要满足 $Ax-By=-1,gcd(x,y)=1$
但其实我们发现 $gcd(x,y)=1$ 是不用判的,因位如果等式成立,则 $gcd(x,y)$ 就一定是 $1$.
那么,我们只需找到 $Ax-By=-1$ 的最小 $x$ 正整数解就行了.
这个可以用 $exgcd$ 直接求,但是有一些细节需要注意:

  1. $A,B$ 都需要大于 $0$.
  2. 我们想求 $x$,所以 $y$ 到底是多少我们是不关心的,直接无视掉就好.

Code:

#include <cstdio>
#include <vector>
#include <algorithm>
#define N 1000006
#define inf 100000000000000000
#define ll long long
#define LL long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1,y=0;
return a;
}
ll ans=exgcd(b,a%b,x,y);
ll tmp=x;
x=y,y=tmp-a/b*y;
return ans;
}
vector<ll>v;
int tot;
int prime[N],is[N];
void init()
{
int i,j;
for(i=2;i<N;++i)
{
if(!is[i]) prime[++tot]=i;
for(j=1;j<=tot&&1ll*prime[j]*i<1ll*N;++j)
{
is[prime[j]*i]=1;
if(i%prime[j]==0) break;
}
}
}
ll solve(ll A,ll B)
{
ll x,y,g,b,ans;
g = exgcd(A,B,x,y);
if(-1%g) return inf;
x*=-1/g,y*=g;
B/=g;
if(B<0) B=-B;
ans=x%B;
if(ans<=0) ans+=B;
return ans*A;
}
int main()
{
// setIO("input");
init();
int T,i,j;
scanf("%d",&T);
while(T--)
{
ll n,h,answer=inf;
scanf("%lld",&n),h=n;
for(i=1;i<=tot;++i)
{
if(h%prime[i]==0)
{
ll kk=1;
while(h%prime[i]==0)
{
h/=prime[i];
kk*=prime[i];
}
v.push_back(kk);
}
}
if(h) v.push_back(h);
int len=v.size();
for(i=0;i<(1<<len);++i) // 枚举所有子集
{
ll tmp=1;
for(j=0;(1<<j)<=i;++j)
{
if(i&(1<<j))
tmp*=v[j];
}
ll A=tmp,B=2*n/tmp;
answer=min(answer,min(solve(A,B),solve(B,A)));
}
printf("%lld\n",answer);
v.clear();
}
return 0;
}

  

Comet OJ - Contest #10 鱼跃龙门 exgcd+推导的更多相关文章

  1. Comet OJ - Contest #10 C.鱼跃龙门

    传送门 题意: 求最小的\(x\),满足\(\frac{x(x+1)}{2}\% n=0,n\leq 10^{12}\). 多组数据,\(T\leq 100\). 思路: 直接考虑模运算似乎涉及到二次 ...

  2. Comet OJ - Contest #10 C题 鱼跃龙门

    ###题目链接### 题目大意: 给你一个 x ,让你求出最小的正整数 n 使得 n * (n + 1) / 2  % x == 0 ,即 n * (n + 1)  % 2x == 0 . 分析: 1 ...

  3. Comet OJ - Contest #10 B题 沉鱼落雁

    ###题目链接### 题目大意:有 n 个正整数,每个正整数代表一个成语,正整数一样则成语相同.同一个正整数最多只会出现 3 次. 求一种排列,使得这个排列中,相同成语的间隔最小值最大,输出这个最小间 ...

  4. Comet OJ - Contest #11 题解&赛后总结

    Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...

  5. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

  6. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

  7. Comet OJ - Contest #5

    Comet OJ - Contest #5 总有一天,我会拿掉给\(dyj\)的小裙子的. A 显然 \(ans = min(cnt_1/3,cnt_4/2,cnt5)\) B 我们可以感性理解一下, ...

  8. Comet OJ Contest #13 D

    Comet OJ Contest #13 D \(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} a^{i} b^{n- ...

  9. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

随机推荐

  1. selenium的使用与chromedriver的下载配置

    Selenium是一个web自动化测试工具,最初是为网站自动化测试而开发的,Selenium可以直接运行在浏览器上,它支持所有主流的浏览器,可以接受指令,让浏览器自动加载页面,获得需要的数据,甚至页面 ...

  2. 【Life】 今天的思考

    今天一个实习生来问我问题,他要用python操作outlook发送邮件,代码是从网上找的. 在其他人的电脑上可以成功运行,但在他的电脑上就失败. 处理过程 (1)我查看了他method里的代码, 发现 ...

  3. @RequestBody, @ResponseBody 注解理解

    @RequestBody, @ResponseBody 注解理解 自己以前没怎么留意过,来实习后公司采用前后端分离的开发方式,前后端拿到的注释都是 json 格式的,这时候 @RequestBody, ...

  4. 国内有哪些好的JAVA社区

    转载自 https://www.zhihu.com/question/29836842#answer-13737722 并发编程网 - ifeve.com 强烈推荐 ImportNew - 专注Jav ...

  5. js中数组的定义方法及注意事项(转)

    1.数组的创建 var name= new Array(); //创建一个数组 name[0]="zhangsan";   //给数组赋值 name[1]="lisi&q ...

  6. vue和react区别

    vue和react区别  

  7. springboot-oracle工程win下正常,centos下不能访问数据库

    工程在win下正常运行,部署到centos下出现下述异常: ### Error querying database. Cause: org.springframework.jdbc.CannotGet ...

  8. 05 正确运行一个Go程序

    Go代码文件,程序中必须指定启动函数main() Hello.go package main //声明为main包,即可以编译成二进制程序 import "fmt" //导入fmt ...

  9. 帝国cms 修改分页样式

    帝国cms 修改分页样式(路径) /e/class/t_functions.php

  10. javascript框架(库)

    javascript框架(库)高级JavaScript编程,尤其是复杂的浏览器差异处理,通常是困难和耗时的.为了响应这些调整,出现了许多javascript(helper)库.这些JavaScript ...