挺简单的,正好能再复习一遍 $exgcd$~

按照题意一遍一遍模拟即可,注意一下 $pollard-rho$ 中的细节.

#include <ctime>
#include <cmath>
#include <cstdio>
#include <algorithm>
#define ll long long
#define ull unsigned long long
#define setIO(s) freopen(s".in","r",stdin), freopen(s".out","w",stdout)
using namespace std;
ll N,E,C,D,n,P,Q,R;
int array[20]={2,11,13,17,19};
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=1,y=0;
return a;
}
ll ans=exgcd(b,a%b,x,y),tmp=x;
x=y,y=tmp-a/b*y;
return ans;
}
ll mult(ll x,ll y,ll mod)
{
ll tmp=(long double)x/mod*y;
return ((ull)x*y-tmp*mod+mod)%mod;
}
ll qpow(ll base,ll k,ll mod)
{
ll tmp=1;
for(;k;k>>=1,base=mult(base,base,mod)) if(k&1) tmp=mult(tmp,base,mod);
return tmp;
}
int isprime(ll x)
{
if(x<=1) return 1;
int i,j,k;
ll pre,cur,a;
for(cur=x-1,k=0;cur%2==0;cur>>=1) ++k;
for(i=0;i<5;++i)
{
if(x==array[i]) return 1;
a=pre=qpow(array[i],cur,x);
for(j=1;j<=k;++j)
{
a=mult(pre,pre,x);
if(a==1&&pre!=1&&pre!=x-1) return 0;
pre=a;
}
if(a!=1) return 0;
}
return 1;
}
ll F(ll x,ll c,ll mod)
{
return (mult(x,x,mod)+c)%mod;
}
ll pollard_rho(ll x)
{
int step,k;
ll s=0,t=0,c=rand()%(x-1)+1,val=1,d;
for(k=1;;k<<=1,s=t,val=1)
{
for(step=1;step<=k;++step)
{
t=F(t,c,x);
val=mult(val,abs(t-s),x);
if(step%127==0)
{
d=__gcd(val,x);
if(d>1) return d;
}
}
d=__gcd(val,x);
if(d>1) return d;
}
}
void solve_d()
{
for(P=N;P>=N;)
P=pollard_rho(N);
Q=N/P;
R=(P-1)*(Q-1);
ll x,y,gcd;
gcd=exgcd(E,R,x,y);
x=(x+R)%R;
D=x; }
int main()
{
int i,j;
// setIO("input");
srand((unsigned)time(NULL));
scanf("%lld%lld%lld",&E,&N,&C);
for(P=N;P>=N;)
P=pollard_rho(N);
Q=N/P;
R=(P-1)*(Q-1);
ll x,y,gcd;
gcd=exgcd(E,R,x,y);
x=(x+R)%R;
D=x;
n=qpow(C,D,N);
printf("%lld %lld\n",D,n);
return 0;
}

  

BZOJ 4522: [Cqoi2016]密钥破解 exgcd+Pollard-Rho的更多相关文章

  1. BZOJ 4522: [Cqoi2016]密钥破解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4522 题目:给你RSA密钥的公钥和密文,求私钥和原文,其中\(N=pq\le 2^{62}\),p和 ...

  2. BZOJ 4522: [Cqoi2016]密钥破解 (Pollard-Rho板题)

    Pollard-Rho 模板 板题-没啥说的- 求逆元出来后如果是负的记得加回正数 CODE #include<bits/stdc++.h> using namespace std; ty ...

  3. 【Luogu】P4358密钥破解(Pollard Rho)

    题目链接 容易发现如果我们求出p和q这题就差不多快变成一个sb题了. 于是我们就用Pollard Rho算法进行大数分解. 至于这个算法的原理,emmm 其实也不是很清楚啦 #include<c ...

  4. LG4718 【模板】Pollard-Rho算法 和 [Cqoi2016]密钥破解

    Pollard-Rho算法 总结了各种卡常技巧的代码: #define int long long typedef __int128 LL; IN int fpow(int a,int b,int m ...

  5. BZOJ4522:[CQOI2016]密钥破解(Pollard-Rho,exgcd)

    Description 一种非对称加密算法的密钥生成过程如下: 1. 任选两个不同的质数 p ,q 2. 计算 N=pq , r=(p-1)(q-1) 3. 选取小于r ,且与 r 互质的整数 e  ...

  6. BZOJ4522: [Cqoi2016]密钥破解

    pollard's rho模板题. 调参调到160ms无能为力了,应该是写法问题,不玩了. #include<bits/stdc++.h> using namespace std; typ ...

  7. [CQOI2016]密钥破解

    嘟嘟嘟 这题我读了两遍才懂,然后感觉要解什么高次同余方程--然后我又仔细的看了看题,发现只要求得\(p\)和\(q\)就能求出\(r\),继而用exgcd求出\(d\),最后用快速幂求出\(n\). ...

  8. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  9. LibreOJ2045 - 「CQOI2016」密钥破解

    Portal Description 给出三个正整数\(e,N,c(\leq2^{62})\).已知\(N\)能表示成\(p\cdot q\)的形式,其中\(p,q\)为质数.计算\(r=(p-1)( ...

随机推荐

  1. win32多线程: 线程创建与结束等待

    #include<Windows.h> #include<iostream> using namespace std; /*1.在启动一个线程之前,必须为线程编写一个全局的线程 ...

  2. markdown中使用缩进

    在markdown中直接敲空格是不生效的. 使用html标签来实现 一个空格大小的表示:  两个空格的大小表示:  不换行空格:  别忘记分号 参考了大神的文章: markdown空格缩进以及HTML ...

  3. linux命令 ip

  4. PHP 协程:Go + Chan + Defer

    Swoole4为PHP语言提供了强大的CSP协程编程模式.底层提供了3个关键词,可以方便地实现各类功能. Swoole4提供的PHP协程语法借鉴自Golang,在此向GO开发组致敬 PHP+Swool ...

  5. Dom编程-左侧菜单栏设计模型实现

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. nginx-consul-template

    概述Consul-template 是 HashiCorp 基于 Consul 所提供的可扩展的工具,通过监听 Consul中的数据变化,动态地修改一些配置文件中地模板.常用于在 Nginx.HAPr ...

  7. 进阶Java编程(10)反射与简单Java类

    1,传统属性自动赋值弊端 简单Java类主要由属性构成,并且提供有setter与getter类,同时简单Java类最大的特征就是通过对象保存相应的类属性的内容.但是如果使用传统的简单Java类开发,那 ...

  8. swagger 报错打不开

    1.controller中的接口里使用的 qto的数据类型有问题: qo中的字段中缺少:(@JsonProperty(value = "sort"),以及定义的example值的格 ...

  9. day07 类

    一.目录 1.模块 2.包 3.isinstance issubclass type 4.方法和函数 5.反射 6.约束 7.继承 8.特殊成员 9.异常处理 补充知识点 10.hashlib模块 1 ...

  10. Python中GUI库PyQt5的安装和配置

    在使用Tkinter开发GUI程序时,发现相关文档比较少,开发起来太累.经过综合比较,决定使用PyQt这个库.下面是简单的安装步骤. 1.安装 PyQt5 : pip install PyQt5 -i ...