题目连接

问题分析

可以给小树钦定一个根, \(Dp[i][j]\) 表示大树上的点 \(i\) 对应到小树上的点 \(j\) 的可能的方案数。然后每一步转移都是一个状压DP(将小树是否被匹配状压,然后枚举大树上的点和小树上的点匹配)。

但如果这样统计的话,在两种情况下有重复:

  • 在小树取不同的根但仍同构;
  • 确定小树的根后,小树的子树同构。

所以我们对钦定根后的小树进行哈希,即可排除第一种重复。而如果小树的某两个子树同构,那么就在统计的时候强行钦定一个顺序,这样就解决了第二种重复。

参考程序

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set> const int Maxn = 2000;
const int Maxm = 12;
const int MaxAlpha = 1 << Maxm;
int Mod = 1e9 + 7;
struct edge
{
int To, Next;
edge() {}
edge(int _To, int _Next) : To(_To), Next(_Next) {}
};
struct node {
int Value, Index;
node() {}
node(int _Value, int _Index) : Value(_Value), Index(_Index) {}
inline bool operator<(const node Other) const
{
return Value < Other.Value;
}
};
edge Edge1[Maxn << 1], Edge2[Maxm << 1];
int n, m, Ans;
int Start1[Maxn + 1], Start2[Maxm + 1], Used1, Used2;
int Hash[Maxm + 1], Father[Maxm + 1], Size[Maxm + 1];
int Dp[Maxn + 1][Maxm + 1], F[2][MaxAlpha];
node Temp[Maxm + 1]; int Ctrl[Maxm + 1];
std::set<int> Set; inline void AddEdge1(int x, int y);
inline void AddEdge2(int x, int y);
inline void Init();
void GetHash(int u, int Fa);
void Calc(int u, int Fa); int main()
{
Init();
for (int i = 1; i <= m; ++i)
{
GetHash(i, 0);
if (Set.count(Hash[i]))
continue;
Set.insert(Hash[i]);
memset(Dp, 0, sizeof(Dp));
Calc(1, 0);
for (int j = 1; j <= n; ++j)
Ans = (Ans + Dp[j][i]) % Mod;
}
printf("%d\n", Ans);
return 0;
} inline void AddEdge1(int x, int y)
{
Edge1[++Used1] = edge(y, Start1[x]);
Start1[x] = Used1;
return;
} inline void AddEdge2(int x, int y)
{
Edge2[++Used2] = edge(y, Start2[x]);
Start2[x] = Used2;
return;
} inline void Init()
{
scanf("%d", &n);
for (int i = 1; i < n; ++i)
{
int x, y;
scanf("%d%d", &x, &y);
AddEdge1(x, y);
AddEdge1(y, x);
}
scanf("%d", &m);
for (int i = 1; i < m; ++i)
{
int x, y;
scanf("%d%d", &x, &y);
AddEdge2(x, y);
AddEdge2(y, x);
}
return;
} void GetHash(int u, int Fa)
{
Size[u] = 1;
Father[u] = Fa;
for (int t = Start2[u]; t; t = Edge2[t].Next)
{
int v = Edge2[t].To;
if (v == Fa)
continue;
GetHash(v, u);
Size[u] += Size[v];
}
int Count = 0;
for (int t = Start2[u]; t; t = Edge2[t].Next)
{
int v = Edge2[t].To;
if (v == Fa)
continue;
Temp[++Count] = node(Hash[v], v);
}
std::sort(Temp + 1, Temp + Count + 1);
Hash[u] = 0;
for (int i = 1; i <= Count; ++i)
{
Hash[u] <<= Size[Temp[i].Index] << 1;
Hash[u] += Hash[Temp[i].Index];
}
Hash[u] <<= 1;
Hash[u] += 1 << ((Size[u] << 1) - 1);
return;
} void Calc(int u, int Fa)
{
for (int t = Start1[u]; t; t = Edge1[t].Next)
{
int v = Edge1[t].To;
if (v == Fa)
continue;
Calc(v, u);
}
for (int uu = 1; uu <= m; ++uu)
{
if (Size[uu] == 1)
{
Dp[u][uu] = 1;
continue;
}
int Count = 0;
memset(Ctrl, 0, sizeof(Ctrl));
for (int t = Start2[uu]; t; t = Edge2[t].Next)
{
int v = Edge2[t].To;
if (v ==Father[uu]) continue;
Temp[++Count] = node(Hash[v], v);
}
std::sort(Temp + 1, Temp + Count + 1);
for (int i = 2; i <= Count; ++i)
if (Temp[i].Value == Temp[i - 1].Value)
Ctrl[i] = 1;
memset(F, 0, sizeof(F));
F[0][0] = 1;
int Step = 0;
for (int t = Start1[u]; t; t = Edge1[t].Next)
{
int v = Edge1[t].To;
if (v ==Fa)
continue;
for (int j = 0; j < 1 << Count; ++j)
F[(Step + 1) & 1][j] = 0;
for (int j = 0; j < 1 << Count; ++j)
for (int k = 1; k <= Count; ++k)
{
if ((j >> (k - 1)) & 1)
continue;
if (Ctrl[k] && ((j >> (k - 2)) & 1) == 0)
continue;
F[(Step + 1) & 1][j | (1 << (k - 1))] += 1LL * F[Step & 1][j] * Dp[v][Temp[k].Index] % Mod;
F[(Step + 1) & 1][j | (1 << (k - 1))] %= Mod;
}
for (int j = 0; j < 1 << Count; ++j)
{
F[(Step + 1) & 1][j] += F[Step & 1][j];
F[(Step + 1) & 1][j] %= Mod;
}
++Step;
}
Dp[u][uu] = F[Step & 1][(1 << Count) - 1];
}
return;
}

CF762F Tree nesting的更多相关文章

  1. 『Tree nesting 树形状压dp 最小表示法』

    Tree nesting (CF762F) Description 有两个树 S.T,问 S 中有多少个互不相同的连通子图与 T 同构.由于答案 可能会很大,请输出答案模 1000000007 后的值 ...

  2. [Educational Round 17][Codeforces 762F. Tree nesting]

    题目连接:678F - Lena and Queries 题目大意:给出两个树\(S,T\),问\(S\)中有多少连通子图与\(T\)同构.\(|S|\leq 1000,|T|\leq 12\) 题解 ...

  3. [Codeforces]762F - Tree nesting

    题目大意:给出一棵n个点的树和一棵m个点的树,问第一棵树有多少个连通子树与第二棵树同构.(n<=1000,m<=12) 做法:先找出第二棵树的重心(可能为边),以这个重心为根,可以避免重复 ...

  4. Educational Codeforces Round 17F Tree nesting

    来自FallDream的博客,未经允许,请勿转载, 谢谢. 给你两棵树,一棵比较大(n<=1000),一棵比较小(m<=12) 问第一棵树中有多少个连通子树和第二棵同构. 答案取膜1e9+ ...

  5. Educational Codeforces Round 17

    Educational Codeforces Round 17 A. k-th divisor 水题,把所有因子找出来排序然后找第\(k\)大 view code //#pragma GCC opti ...

  6. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  7. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  8. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  9. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

随机推荐

  1. 进阶Java编程(13)反射与Annotation

    1,反射取得Annotation信息 从JDK1.5之后Java提供了Annotation技术支持,这种技术为项目的编写带来了新的模型,而后经过了十年的发展,Annotation的技术得到了非常广泛的 ...

  2. oracle sqlplus执行sql语句字符集问题

    因为业务需要,现将一些包含中文的insert语句导入到oracle数据库中,由于数据量比较大,通过pl/sql*plus导入时非常慢(实测1.5M的文件大概执行20分钟),现在oracle服务器sql ...

  3. JS基础_算数运算符

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. 解压版msyql8.0的安装和配置

    一.环境变量配置 变量名:MYSQL_HOME 变量值:D:\mysql-8.0.12-winx64\bin 然后在Path变量开头添加%MYSQL_HOME%:然后确定保存即可: 二.配置my.in ...

  5. js中——限制文本框输入非数字

      //先把非数字的都替换掉,除了数字和.和/             obj.value = obj.value.replace(/[^\-\d./]/g, ""); //必须保 ...

  6. Unexpected console statement (no-console)

    在vue cli项目中用consloe.log()打印,启动项目报错 export default { name: 'app', components: { }, created() { this.t ...

  7. DataSnap跨域

  8. kubernetes资源清单之Deployment

    Deployment为Pod和ReplicaSets提供声明性更新 示例 --- apiVersion: apps/v1 kind: Deployment metadata:     name: de ...

  9. ios系统保存校园网密码

    相信ios用户每次登陆时无法保存必须要重新输入账号密码的问题困扰了很多同学,特别是苹果5用户(不要问为什么,屏幕本来就小) 现在我们就一起想办法来解决它吧! 首先,我们进入设置->Safari浏 ...

  10. libusb_submit_transfer 异步通信libusb

    https://bbs.csdn.net/topics/391012708?list=lz