Tree Land Kingdom is a prosperous and lively kingdom. It has N cities which are connected to each
other by roads such that there is exactly one path to go from one city to any other city. Each road in
the kingdom connects exactly two different cities.
Every day a lot of merchants travel from one city to other cities in the kingdom making this kingdom
famous for its commerce. The king of this kingdom wonders, which city is the busiest one in his entire
kingdom. The busyness of a city is defined as the number of merchants who visits this city on each
day. A merchant is considered as visiting c city if and only if city c lies on the path when the merchant
travels from city a to city b.
Unfortunately, we need a lot of resources and time to answer the king’s question. Therefore, the
ministers come up with an idea to approximate the answer so they can provide the king with an “early”
answer while they are working on the actual answer. To approximate the answer, the ministers modify
the definition of a city’s busyness a bit. The busyness of a city a is now defined as the number of
different pair of cities a − b such that c lies in a simple path from a to b (note that c is neither a nor
c). A path is considered simple if and only if it does not visit any city more than once.
Consider the example as shown in Figure 1 below.
In this example, the busyness of city A, B, E and F are 0 because there is no pair of cities which
path visits those nodes. The busyness of city C is 7 (the pairs are: A-B, A-D, A-E, A-F, B-D, B-E, B-F)
and the busyness of city D is also 7 (the pairs are: A-E, A-F, B-E, B-F, C-E, C-F, E-F). Therefore, the
highest busyness in this example is 7, which occurs in city C and D.
Given the kingdom’s road structure, your task is to determine the highest busyness among all cities
in the kingdom.
Input
The first line of input contains an integer T (T ≤ 50) denoting the number of cases. Each case begins
with an integer N (3 ≤ N ≤ 20,000) denoting the number of cities in the kingdom. The cities are
numbered from 1 to N. The following N − 1 lines each contains two integers a and b (1 ≤ a, b ≤ N)
denoting a road which connects city a and city b.
Output
For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the highest
busyness among all cities in the kingdom for that case.
Notes:
• Explanation for 1st sample case
This sample case corresponds to Figure 1 in the problem statement.
• Explanation for 2nd sample case
The busiest city is city 2 with busyness of 1 (the pair is: 1-3).
• Explanation for 3rd sample case
The busiest city is city 2 with busyness of 3 (the pairs are: 1-3, 1-4, 3-4)

Sample Input

1 3
2 3
3 4
4 5
4 6

1 2
2 3

1 2
2 3
2 4

2 5
1 2
7 4
3 7
2 3
7 6
Sample Output
Case #1: 7
Case #2: 1
Case #3: 3
Case #4: 9

题意:给出n个顶点,n-1条边,对于每一个顶点来说每有一条路径经过,繁荣度+1,求最大繁荣度。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=20000+10;
int n,ans=0,sum[maxn];
vector<vector<int> > G(maxn);
void add_edge(int u,int v)
{
G[u].push_back(v);
G[v].push_back(u);
} void dfs(int father,int u)
{
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(v==father) continue;
dfs(u,v);
sum[u]+=sum[v];
}
int m=sum[u]*(n-1-sum[u]),tmp=0;
for(int i=0;i<G[u].size();i++)
{
int x=G[u][i];
if(x==father) continue;
tmp+=sum[x]*(sum[u]-sum[x]);
}
m+=tmp/2;
ans=max(ans,m);
sum[u]++;
} int main()
{
int cas,kk=0;
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<=n-1;i++)
{
int u,v;
scanf("%d %d",&u,&v);
add_edge(u,v);
}
MM(sum,0);ans=0;
dfs(0,1);
printf("Case #%d: %d\n",++kk,ans);
}
return 0;
}

  分析:很棒的一道题目,刚开始还是觉得有难度的,因为想的是对于每个点在O(1)时间内统计出他左边的点的个数和右边点的个数,然后还要考虑一个点可能不止连接着两个点.......

正确解答:原先的想法中统计出点分支的边对应的子树上点的个数思路还是有些正确的,难点就在与不会怎么统计,实际上,没有充分利用好这是一棵树的性质,是一颗树的话就意味着可以以1为根节点建一棵树,

然后sum[u]代表u的子树上的节点个数,那么这个点的富有度就是sum[u]*(n-1-sum[u])+子树上的

点,dfs建树就好,复杂度O(N);

  

LA 6434 The Busiest City dfs的更多相关文章

  1. codeforces B. Strongly Connected City(dfs水过)

    题意:有横向和纵向的街道,每个街道只有一个方向,垂直的街道相交会产生一个节点,这样每个节点都有两个方向, 问是否每一个节点都可以由其他的节点到达.... 思路:规律没有想到,直接爆搜!每一个节点dfs ...

  2. LA 6476 Outpost Navigation (DFS+剪枝)

    题目链接 Solution DFS+剪枝 对于一个走过点k,如果有必要再走一次,那么一定是走过k后在k点的最大弹药数增加了.否则一定没有必要再走. 记录经过每个点的最大弹药数,对dfs进行剪枝. #i ...

  3. UVALive - 6436

    题目链接:https://vjudge.net/contest/241341#problem/C Tree Land Kingdom is a prosperous and lively kingdo ...

  4. hibernate 左链接查询

    select pro from Provide as pro left join pro.labels as la left join pro.city as c where 1=1

  5. [POJ] 1948 Triangular Pastures (DP)

    题目地址:http://poj.org/problem?id=1948 题目大意: 给N条边,把这些边组成一个三角形,问面积最大是多少?必须把所有边都用上. 解题思路: 根据题意周长c已知,求组合三边 ...

  6. 快速批量导入庞大数据到SQL SERVER数据库(ADO.NET)

    原文地址:http://www.cnblogs.com/chenxizhang/archive/2008/11/11/1331060.html 如果你需要在程序中批量插入成千上万行的数据,你会怎么编写 ...

  7. [搜索] hdu 4016 Magic Bitwise And Operation

    主题链接: http://acm.hdu.edu.cn/showproblem.php?pid=4016 Magic Bitwise And Operation Time Limit: 6000/30 ...

  8. [TJOI2012]桥(最短路+线段树)

    有n个岛屿, m座桥,每座桥连通两座岛屿,桥上会有一些敌人,玩家只有消灭了桥上的敌人才能通过,与此同时桥上的敌人会对玩家造成一定伤害.而且会有一个大Boss镇守一座桥,以玩家目前的能力,是不可能通过的 ...

  9. 用json获取拉钩网的信息

    class LaoGo(object): def __init__(self): self.url="http://www.lagou.com/lbs/getAllCitySearchLab ...

随机推荐

  1. Python【print函数】

    下面是 print函数的一种用法,用逗号隔开,可在同一行打印不同类型的数据.x = input('请你输入被除数:')y = input('请你输入除数:')z = float(x)/float(y) ...

  2. linux常用国内的免费源及其各别的配置方法.阿里源,epel源,搜狐网易等等..

    国内的一些开源的平台收集的源,确实给我们提供了很多便利,所以我就稍微收集整理了一些常用的源和网址,我也不确定能用到什么时候!欢迎评论区留言! 搜狐开源镜像站 http://mirrors.sohu.c ...

  3. C - 简易贪吃蛇的编写

    不多废话,直接进入正题——用C编写简易贪吃蛇.附上拙劣的源码 * c-snake * 首先说明使画面动起来的原理:通过 system("cls"); 清除当前控制台的显示,再pri ...

  4. c#连接Java后台,处理返回的数据

    首先定义共通文件,根据url连接Java后台 class ConntectUtil { public JObject ConsoleApplication(string appID, CustomDa ...

  5. webmagic学习之路-1:采集安居客列表页测试

    ---恢复内容开始--- package com.action; import java.util.ArrayList; import java.util.List; import java.util ...

  6. 数据库SQL优化分析查询语句总结

    方法一: SELECT TOP 10 TEXT AS 'SQL Statement' ,last_execution_time AS 'Last Execution Time' ,(total_log ...

  7. Django: ORM 数据库设置和读写分离

    一.Django的数据库配置 (一)修改settings.py文件关于数据库的配置: Django默认使用sqlite: # Django默认的数据库库,SQLit配置 DATABASES = { ' ...

  8. js之语句(表达式语句,复合语句,声明语句)

    语句就是JavaScript整句或命令,以分号结束,用来执行以使某件事发生.下面将介绍三种语句:表达式语句,复合语句,声明语句. 一.表达式语句 表达式语句是javascript中最简单的语句 < ...

  9. day10 mysql常用操作

    一. 目录 1.mysql的简介 2.增删改查操作 3.单表查询 4.多表查询常见的三种方式 5.pymysql模块操作数据库 二. 内容 一.mysql的简介  概述:mysql是一个关系型数据库, ...

  10. git 多账户添加ssh秘钥

    生成秘钥的步骤: ssh-keygen -t rsa -C "xxxx@qq.com" 添加秘钥 在不同的域中添加相同的秘钥是没有问题的,比如 github.com / code. ...