Tree Land Kingdom is a prosperous and lively kingdom. It has N cities which are connected to each
other by roads such that there is exactly one path to go from one city to any other city. Each road in
the kingdom connects exactly two different cities.
Every day a lot of merchants travel from one city to other cities in the kingdom making this kingdom
famous for its commerce. The king of this kingdom wonders, which city is the busiest one in his entire
kingdom. The busyness of a city is defined as the number of merchants who visits this city on each
day. A merchant is considered as visiting c city if and only if city c lies on the path when the merchant
travels from city a to city b.
Unfortunately, we need a lot of resources and time to answer the king’s question. Therefore, the
ministers come up with an idea to approximate the answer so they can provide the king with an “early”
answer while they are working on the actual answer. To approximate the answer, the ministers modify
the definition of a city’s busyness a bit. The busyness of a city a is now defined as the number of
different pair of cities a − b such that c lies in a simple path from a to b (note that c is neither a nor
c). A path is considered simple if and only if it does not visit any city more than once.
Consider the example as shown in Figure 1 below.
In this example, the busyness of city A, B, E and F are 0 because there is no pair of cities which
path visits those nodes. The busyness of city C is 7 (the pairs are: A-B, A-D, A-E, A-F, B-D, B-E, B-F)
and the busyness of city D is also 7 (the pairs are: A-E, A-F, B-E, B-F, C-E, C-F, E-F). Therefore, the
highest busyness in this example is 7, which occurs in city C and D.
Given the kingdom’s road structure, your task is to determine the highest busyness among all cities
in the kingdom.
Input
The first line of input contains an integer T (T ≤ 50) denoting the number of cases. Each case begins
with an integer N (3 ≤ N ≤ 20,000) denoting the number of cities in the kingdom. The cities are
numbered from 1 to N. The following N − 1 lines each contains two integers a and b (1 ≤ a, b ≤ N)
denoting a road which connects city a and city b.
Output
For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the highest
busyness among all cities in the kingdom for that case.
Notes:
• Explanation for 1st sample case
This sample case corresponds to Figure 1 in the problem statement.
• Explanation for 2nd sample case
The busiest city is city 2 with busyness of 1 (the pair is: 1-3).
• Explanation for 3rd sample case
The busiest city is city 2 with busyness of 3 (the pairs are: 1-3, 1-4, 3-4)

Sample Input

1 3
2 3
3 4
4 5
4 6

1 2
2 3

1 2
2 3
2 4

2 5
1 2
7 4
3 7
2 3
7 6
Sample Output
Case #1: 7
Case #2: 1
Case #3: 3
Case #4: 9

题意:给出n个顶点,n-1条边,对于每一个顶点来说每有一条路径经过,繁荣度+1,求最大繁荣度。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=20000+10;
int n,ans=0,sum[maxn];
vector<vector<int> > G(maxn);
void add_edge(int u,int v)
{
G[u].push_back(v);
G[v].push_back(u);
} void dfs(int father,int u)
{
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(v==father) continue;
dfs(u,v);
sum[u]+=sum[v];
}
int m=sum[u]*(n-1-sum[u]),tmp=0;
for(int i=0;i<G[u].size();i++)
{
int x=G[u][i];
if(x==father) continue;
tmp+=sum[x]*(sum[u]-sum[x]);
}
m+=tmp/2;
ans=max(ans,m);
sum[u]++;
} int main()
{
int cas,kk=0;
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<=n-1;i++)
{
int u,v;
scanf("%d %d",&u,&v);
add_edge(u,v);
}
MM(sum,0);ans=0;
dfs(0,1);
printf("Case #%d: %d\n",++kk,ans);
}
return 0;
}

  分析:很棒的一道题目,刚开始还是觉得有难度的,因为想的是对于每个点在O(1)时间内统计出他左边的点的个数和右边点的个数,然后还要考虑一个点可能不止连接着两个点.......

正确解答:原先的想法中统计出点分支的边对应的子树上点的个数思路还是有些正确的,难点就在与不会怎么统计,实际上,没有充分利用好这是一棵树的性质,是一颗树的话就意味着可以以1为根节点建一棵树,

然后sum[u]代表u的子树上的节点个数,那么这个点的富有度就是sum[u]*(n-1-sum[u])+子树上的

点,dfs建树就好,复杂度O(N);

  

LA 6434 The Busiest City dfs的更多相关文章

  1. codeforces B. Strongly Connected City(dfs水过)

    题意:有横向和纵向的街道,每个街道只有一个方向,垂直的街道相交会产生一个节点,这样每个节点都有两个方向, 问是否每一个节点都可以由其他的节点到达.... 思路:规律没有想到,直接爆搜!每一个节点dfs ...

  2. LA 6476 Outpost Navigation (DFS+剪枝)

    题目链接 Solution DFS+剪枝 对于一个走过点k,如果有必要再走一次,那么一定是走过k后在k点的最大弹药数增加了.否则一定没有必要再走. 记录经过每个点的最大弹药数,对dfs进行剪枝. #i ...

  3. UVALive - 6436

    题目链接:https://vjudge.net/contest/241341#problem/C Tree Land Kingdom is a prosperous and lively kingdo ...

  4. hibernate 左链接查询

    select pro from Provide as pro left join pro.labels as la left join pro.city as c where 1=1

  5. [POJ] 1948 Triangular Pastures (DP)

    题目地址:http://poj.org/problem?id=1948 题目大意: 给N条边,把这些边组成一个三角形,问面积最大是多少?必须把所有边都用上. 解题思路: 根据题意周长c已知,求组合三边 ...

  6. 快速批量导入庞大数据到SQL SERVER数据库(ADO.NET)

    原文地址:http://www.cnblogs.com/chenxizhang/archive/2008/11/11/1331060.html 如果你需要在程序中批量插入成千上万行的数据,你会怎么编写 ...

  7. [搜索] hdu 4016 Magic Bitwise And Operation

    主题链接: http://acm.hdu.edu.cn/showproblem.php?pid=4016 Magic Bitwise And Operation Time Limit: 6000/30 ...

  8. [TJOI2012]桥(最短路+线段树)

    有n个岛屿, m座桥,每座桥连通两座岛屿,桥上会有一些敌人,玩家只有消灭了桥上的敌人才能通过,与此同时桥上的敌人会对玩家造成一定伤害.而且会有一个大Boss镇守一座桥,以玩家目前的能力,是不可能通过的 ...

  9. 用json获取拉钩网的信息

    class LaoGo(object): def __init__(self): self.url="http://www.lagou.com/lbs/getAllCitySearchLab ...

随机推荐

  1. jwt认证规则

    目录 认证规则图 django不分离 drf分类 认证规则演变图 数据库session认证:低效 缓存认证:高效 jwt认证:高效 缓存认证:不易并发 jwt认证:易并发 JWT认证规则 优点 格式 ...

  2. ipairs与pairs的区别

    ipairs 和pairs在lua中都是遍历tbale的函数可是两者有差别 1.pairs遍历table中的全部的key-vale 而ipairs会依据key的数值从1開始加1递增遍历相应的table ...

  3. git的常用指令(二) git add -A 、git add . 和 git add -u

    git add . :他会监控工作区的状态树,使用它会把工作时的所有变化提交到暂存区,包括文件内容修改(modified)以及新文件(new),但不包括被删除的文件. git add -u :他仅监控 ...

  4. sftp上传文件(Renci.SshNet)和代理上传

    引用Renci.SshNet这个 封装的sftp类 public class SFTPHelper { #region 字段或属性 private SftpClient sftp; /// <s ...

  5. WCF寄宿windows服务一

    如果只是寄宿单个wcf服务,方法很简单,步骤:1.创建好一个windows服务.关于windows服务内容见:http://www.cnblogs.com/zhaow/p/7866916.html2. ...

  6. eclipse设置字体

  7. web登录的session、cookie和token

    为什么会有登录这回事 首先这是因为HTTP是无状态的协议,所谓无状态就是在两次请求之间服务器并不会保存任何的数据,相当于你和一个人说一句话之后他就把你忘掉了.所以,登录就是用某种方法让服务器在多次请求 ...

  8. 如何解决Win10电脑网速慢的问题?

    很多Win10系统用户反映自己的电脑配置并不算低,却比有些旧电脑上网速度还要慢,不知道是什么原因. 其实,除了运营商网速的原因外,我们的电脑设置也会对网速有所影响.下面好系统U盘启动就来介绍一个Win ...

  9. Delphi 配置BDE数据源

    樊伟胜

  10. mysql数据库:数据类型、存储引擎、约束、

      1.详细的建表语句 *****    create table 表名( 字段名 数据类型[(长度) 约束条件] );    []代表可选的    为什么需要给数据分类?        189  一 ...