Pandas-数据处理-基础部分
有趣的事,Python永远不会缺席!
jupyter 代码 原文件及数据集提取连接
链接:https://pan.baidu.com/s/1N8sm-qxnErgHCIbKqZTlVQ
提取码:z3jn
- 1 Pandas对象简介
- 1.1 Pandas的Series对象
- 1.1.1 创建Series对象
- 1.2 Pandas的DataFrame对象
- 1.2.1 创建DataFrame对象
- 1.3 Pandas的Index对象
- 2 数据取值与选择
- 2.1 Series数据选择方法
- 2.1.1 将Series看作字典
- 2.1.2 将Series看作一维数组
- 2.1.3 索引器:loc、iloc和ix
- 2.2 DataFrame数据选择方法
- 2.2.1 将DataFrame看作字典
- 2.2.2 将DataFrame看作二维数组
- 2.2.3 其他取值方法
- 3 Pandas数值运算方法
- 4 索引对齐
- 4.1 Series索引对齐
- 4.2 DataFrame索引对齐
- 4.3 DataFrame与Series的运算
- 5 处理缺失值
- 5.1 Pandas的缺失值
- 5.1.1 None:Python对象类型的缺失值
- 5.1.2 NaN:数值类型的缺失值
- 5.1.3 Pandas中NaN和None的差异
- 5.2 处理缺失值
- 5.2.1 发现缺失值
- 5.2.2 剔除缺失值
- 5.2.3 填充缺失值
- 6 层级索引
- 6.1 pandas多级索引
- 6.2 多级索引的创建方法
- 6.3 多级列索引
- 6.4 多级索引的取值和切片
- 6.4.1 Series多级索引
- 6.4.2 DataFrame多级索引
- 7 多级索引的行列转换
- 7.1 有序索引和无序索引
- 7.2 索引stack与unstack
- 7.3 索引的设置与重置
- 8 多级索引的数据累计方法
- 9 Concat与Append操作
- 9.1 NumPy数组的合并
- 9.2 通过pd.concat实现简易合并
- 9.3 索引重复
- 9.4 append()方法
- 10 合并与连接merge
- 10.1 数据连接的类型
- 10.1.1 一对一连接
- 10.1.2 多对一连接
- 10.1.3 多对多连接
- 10.2 设置数据合并的键
- 10.3 left_index与right_index参数
- 10.4 设置数据连接的集合操作规则
- 10.5 suffixes参数
结果
Successfully !!!
有趣的事,Python永远不会缺席!还不来加我,瞅什么Ne。哒哒哒。。。
Pandas-数据处理-基础部分的更多相关文章
- pandas数据处理基础——筛选指定行或者指定列的数据
pandas主要的两个数据结构是:series(相当于一行或一列数据机构)和DataFrame(相当于多行多列的一个表格数据机构). 本文为了方便理解会与excel或者sql操作行或列来进行联想类比 ...
- pandas数据处理基础——基础加减乘除的运算规则
上周公司对所有员工封闭培训了一个星期,期间没收手机,基本上博客的更新都停止了,尽管培训时间不长,但还是有些收获,不仅来自于培训讲师的,更多的是发现自己与别人的不足,一个优秀的人不仅仅是自己专业那块的精 ...
- 【学习】数据处理基础知识(基本功能)【pandas】
本章介绍pandas的重要功能,只记录一些重点内容 1.重新索引 pandas对象的一个重要方法是reindex,其作用是创建一个适应用新索引的新对象 #重新索引 obj = pd.Series([4 ...
- pandas | DataFrame基础运算以及空值填充
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第四篇文章,我们一起来聊聊DataFrame中的索引. 上一篇文章当中我们介绍了DataFrame数据结构当 ...
- Pandas的基础操作(一)——矩阵表的创建及其属性
Pandas的基础操作(一)——矩阵表的创建及其属性 (注:记得在文件开头导入import numpy as np以及import pandas as pd) import pandas as pd ...
- python中pandas数据分析基础3(数据索引、数据分组与分组运算、数据离散化、数据合并)
//2019.07.19/20 python中pandas数据分析基础(数据重塑与轴向转化.数据分组与分组运算.离散化处理.多数据文件合并操作) 3.1 数据重塑与轴向转换1.层次化索引使得一个轴上拥 ...
- pyhton pandas数据分析基础入门(一文看懂pandas)
//2019.07.17 pyhton中pandas数据分析基础入门(一文看懂pandas), 教你迅速入门pandas数据分析模块(后面附有入门完整代码,可以直接拷贝运行,含有详细的代码注释,可以轻 ...
- 【PY从0到1】 一文掌握Pandas量化基础
# 2[PY从0到1] 一文掌握Pandas量化基础 # Numpy和pandas是什么关系呢? # 在我看来,np偏向于数据细节处理,pd更偏向于表格整体的处理. # 要记住的pd内部的数据结构采用 ...
- 【学习】数据处理基础知识(缺失值处理)【pandas】
缺失数据(missing data)大部分数据分析应用中非常常见.pd设计目标之一就是让缺失数据的处理任务尽量轻松. pd 使用浮点值NaN(Not a Number) 表示浮点和非浮点数组中的缺失数 ...
- 【学习】数据处理基础知识(汇总和计算描述统计)【pandas】
pd对象拥有一组常用的数学和统计方法.大部分都属于约简和汇总统计,用于从Series中单个值,如sum 和 mean 或从DF的行或列中提取一个Series. 1. 描述和汇总统计方法 #汇总和计算描 ...
随机推荐
- Python3基础 str : 对字符串进行切片
Python : 3.7.3 OS : Ubuntu 18.04.2 LTS IDE : pycharm-community-2019.1.3 ...
- android 应用签名的作用
来源:https://www.jianshu.com/p/61206c96471a 1..应用程序升级:如果你希望用户无缝升级到新的版本,那么你必须用同一个证书进行签名.这是由于只有以同一个证书签名, ...
- 安卓 android studio 报错 WARNING: Configuration 'compile' is obsolete and has been replaced with 'implementation' and
报错截图: 问题原因:compile会被在2018年底取消,会被imlementation替代,所以会报这个警告,解决警告的方式就是换成 imlementation 就好了 解决方法: 在 app 的 ...
- 转 检查rac服务时,发现ons服务offline
检查rac服务时,发现ons服务offline 时间:2014-12-23 11:17:37 作者:solgle 来源:www.solgle.com 查看:4075 评论:0 ...
- Spring Boot 使用YAML配置
YAML是JSON的一个超集,可以非常方便地将外部配置以层次结构形式存储起来.当项目的类路径中有SnakeYAML库(spring-boot-starter中已经被包含)时,SpringApplica ...
- LeetCode_389. Find the Difference
389. Find the Difference Easy Given two strings s and t which consist of only lowercase letters. Str ...
- 【GStreamer开发】GStreamer播放教程04——既看式流
目的 在<GStreamer基础教程--流>里面我们展示了如何在较差的网络条件下使用缓冲这个机制来提升用户体验.本教程在<GStreamer基础教程--流>的基础上在扩展了一下 ...
- C#等比例缩放图片
等比例缩放图片(C#) private Bitmap ZoomImage(Bitmap bitmap, int destHeight, int destWidth) { try { System.Dr ...
- centos7 install docker
sudo yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo y ...
- [SQL] - Attempted to read or write protected memory. This is often an indication that other memory is corrupt. 问题之解决
场景: 使用 Oracle.DataAccess.dll 访问数据库时,OracleDataAdapter 执行失败. 异常: System.AccessViolationException was ...