Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b
Time Limit: 50 Sec Memory Limit: 256 MB
Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2
2 5 1 5 1
1 5 1 5 2
Sample Output
14
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
/*
莫比乌斯反演.
好吧这题比上一题简单.
然后容斥的话用二维矩阵想一想就行了.
一开始推式子的时候把推错了一个取值 (打手.
最后是这个东西∑(min(n/k,m/k),d=1)mu[d]*[n/kd][m/kd].
朴素是O(n/k)的,用除法分块优化以后可以降到O(2√n).
用cout输出BZOJ判 Wrong 不知道为啥.
*/
#include<iostream>
#include<cstdio>
#define MAXN 50001
#define LL long long
using namespace std;
int t,a,b,c,d,k,tot,last,mu[MAXN],pri[MAXN];
LL ans,sum[MAXN];
bool vis[MAXN];
void pre()
{
mu[1]=1;
for(int i=2;i<=MAXN-1;i++)
{
if(!vis[i]) vis[i]=true,pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=MAXN-1;j++)
{
vis[i*pri[j]]=true;
if(i%pri[j]) mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
for(int i=1;i<=MAXN-1;i++) sum[i]=sum[i-1]+mu[i];
}
LL slove(LL n,LL m)
{
ans=0;n/=k,m/=k;
for(LL i=1;i<=min(n,m);i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans+=(n/i)*(m/i)*(sum[last]-sum[i-1]);
}
return ans;
}
int main()
{
pre();
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",slove(b,d)-slove(b,c-1)-slove(a-1,d)+slove(a-1,c-1));
}
return 0;
}
Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)的更多相关文章
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演
分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- bzoj 2301: [HAOI2011]Problem b mobius反演 RE
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数. 设F( ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 6519 Solved: 3026[Submit] ...
- BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 436 Solved: 187[Submit][S ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
随机推荐
- Python yield 使用浅析【转】
Python yield 使用浅析 IBM developerWorks 中国 : Open source IBM 开源 - IBM Developer 中国 (原 developerWorks 中国 ...
- Elastic Search快速上手(2):将数据存入ES
前言 在上手使用前,需要先了解一些基本的概念. 推荐 可以到 https://www.elastic.co/guide/cn/elasticsearch/guide/current/index.htm ...
- Educational Codeforces Round 65 (Div. 2)
A.前n-10个有8即合法. #include<cstdio> #include<cstring> #include<iostream> #include<a ...
- NetLink通信原理研究、Netlink底层源码分析、以及基于Netlink_Connector套接字监控系统进程行为技术研究
1. Netlink简介 0x1:基本概念 Netlink是一个灵活,高效的”内核-用户态“.”内核-内核“.”用户态-用户态“通信机制.通过将复杂的消息拷贝和消息通知机制封装在统一的socket a ...
- ASP.net Web API综合示例
目录 概述 功能介绍 程序结构 服务器端介绍 客户端介绍 “契约” Web API设计规则 并行写入冲突与时间戳 身份验证详解 Web API验证规则 客户端MVVM简介 Web.Config 本DE ...
- 偶数矩阵 Even Parity,UVa 11464
题目描述 Description 给你一个n*n的01矩阵(每个元素非0即1),你的任务是把尽量少的0变成1,使得每个元素的上.下.左.右的元素(如果存在的话)之和均为偶数.如图所示的矩阵至少要把3个 ...
- docker 宿主机与容器直接文件移动命令
1.将容器中的文件复制到宿主机 我们把容器中的 nginx 目录整个复制到 宿主机/usr/local/nginx 目录下,使用如下命令: docker cp nginx_test: /etc/ng ...
- sqlserver2008+日志收缩sql语句命令
USE[master] GO ALTER DATABASE 数据库 SET RECOVERY SIMPLE WITH NO_WAIT GO ALTER DATABASE 数据库 SET RECOVER ...
- Jenkins 发邮件的Job
Jenkins要做到构建失败的时候发送邮件,常规做法是加个全局的post failure,类似这样的代码 pipeline { agent any stages { stage('deploy') { ...
- nginx热加载、热升级、回滚
修改完配置文件后使用 nginx -s reload 命令进行热加载 编译好新的 nginx 二进制文件后,运行nginx 开启nginx服务,然后使用 kill -USR2 新的nginx_mast ...