luogu P4859 已经没有什么好害怕的了
嘟嘟嘟
题中给的\(k\)有点别扭,我们转换成\(a > b\)的对数是多少,这个用二元一次方程解出来是\(\frac{n + k}{2}\)。
然后考虑dp,令\(dp[i][j]\)表示前\(i\)个数中,有\(j\)对满足\(a > b\)的方案数,转移的时候考虑这一组是否满足\(a > b\)即可:\(dp[i][j] = dp[i - 1][j] + dp[i - 1][j - 1] * (num[i] - (j - 1))\)。其中\(num[i]\)表示比\(a[i]\)小的\(b[i]\)的个数。
求完这个还没有完事,因为我们只保证了有\(j\)个满足\(a > b\),而剩下的位置并不清楚。
于是令\(g[i] = dp[n][i] * (n - i)!\),表示\(n\)组匹配中,至少有\(i\)组满足\(a > b\)的方案数,因为剩下的\(n - i\)个位置是瞎排的,所以不知道是否会出现\(a > b\)。
令\(f[i]\)表示恰好有\(i\)个匹配满足\(a > b\),那么能列出\(g[k] = \sum _ {i = k} ^ {n} C_{i} ^ {k} f[i]\)(其实自己并不是十分懂这一步),然后通过二项式反演就可以求出\(f[k] = \sum _ {i = k} ^ {n} (-1) ^ {i - k} C_{i} ^ {k} g[i]\)。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<assert.h>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 2e3 + 5;
const ll mod = 1e9 + 9;
In ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
freopen("ha.in", "r", stdin);
freopen("ha.out", "w", stdout);
#endif
}
int n, K, a[maxn], b[maxn], num[maxn];
In ll inc(ll a, ll b) {return a + b < mod ? a + b : a + b - mod;}
ll fac[maxn], C[maxn][maxn];
In void init()
{
fac[0] = 1;
for(int i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i % mod;
C[0][0] = 1;
for(int i = 1; i <= n; ++i)
{
C[i][0] = 1;
for(int j = 1; j <= i; ++j) C[i][j] = inc(C[i - 1][j - 1], C[i - 1][j]);
}
}
ll dp[maxn][maxn];
int main()
{
MYFILE();
n = read(), K = (n + read()) >> 1;
init();
for(int i = 1; i <= n; ++i) a[i] = read();
for(int i = 1; i <= n; ++i) b[i] = read();
sort(a + 1, a + n + 1), sort(b + 1, b + n + 1);
for(int i = 1; i <= n; ++i) num[i] = lower_bound(b + 1, b + n + 1, a[i]) - b - 1;
dp[0][0] = 1;
for(int i = 1; i <= n; ++i)
{
dp[i][0] = dp[i - 1][0];
for(int j = 1; j <= i; ++j)
dp[i][j] = inc(dp[i - 1][j] % mod, dp[i - 1][j - 1] * (num[i] - j + 1) % mod);
}
ll ans = 0;
for(int i = K; i <= n; ++i)
{
int flg = (i - K) & 1;
ll tp = C[i][K] * fac[n - i] % mod * dp[n][i] % mod;
ans = inc(ans, flg ? mod - tp : tp);
}
write(ans), enter;
return 0;
}
luogu P4859 已经没有什么好害怕的了的更多相关文章
- BZOJ 3622 Luogu P4859 已经没有什么好害怕的了 (容斥原理、DP)
题目链接 (Luogu) https://www.luogu.org/problem/P4859 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...
- P4859 已经没有什么好害怕的了(dp+二项式反演)
P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- Luogu P4859「已经没有什么好害怕的了」
以前开过一遍这题,以为很难没刚下去 今天$ review$一遍分析了一下感觉也还好 luogu 4859 题意:给定长度为$ n \leq 2000$的数组$ A,B$求完全匹配使得$A>B$的 ...
- 洛谷 P4859 已经没有什么好害怕的了 解题报告
已经没有什么好害怕的了 题目描述 已经使\(\tt{Modoka}\)有签订契约,和自己一起战斗的想法后,\(\tt{Mami}\)忽然感到自己不再是孤单一人了呢. 于是,之前的谨慎的战斗作风也消失了 ...
- 洛谷P4859 已经没有什么好害怕的了 [DP,容斥]
传送门 思路 大佬都说这是套路题--嘤嘤嘤我又被吊打了\(Q\omega Q\) 显然,这题是要\(DP\)的. 首先思考一下性质: 为了方便,下面令\(k=\frac{n+k}{2}\),即有恰好\ ...
- P4859 已经没有什么好害怕的了
传送门 见计数想容斥 首先题目可以简单转化一下, 求 糖果比药片能量大的组数比药片比糖果能量大的组数多 $k$ 组 的方案数 因为所有能量各不相同,所以就相当于求 糖果比药片能量大的组数为 $(n+k ...
- 洛谷P4859 已经没有什么好害怕的了
因为不存在任意两个数相同,那么设糖果比药片大的组有 \(x\) 个,药片比糖果大的组有 \(y\) 个,那么我们有: \[x + y = n, x - y = k \] 即: \[x = \frac{ ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
随机推荐
- 关于C#7 新语法糖
C#7新语法糖 1.Switch 使用 goto 使用 ; switch (kk) { : Console.WriteLine(); ; : Console.WriteLine(); ; : Con ...
- 九、小程序 Redux详解与在小程序中怎么使用(action和reducers)
什么是Redux Redux我们可以把它理解成一个状态管理器,可以把状态(数据)存在Redux中,以便增.删.改.例如: 从服务器上取一个收藏列表,就可以把取回来的列表数据用Redux管理,多个页 ...
- my SO 链接opencv静态库一些FUCKing的笔记 opencv410 有毒
1. 2. CMake "/work/lib/opencv/ubuntu14/4.1.0" make[2]: *** No rule to make target `/usr/lo ...
- controller 层 date 类型的参数,SpringBoot自动转换 dateformat
这样客户端提交的String 就可以自动转换为Date了!!!
- mongoose整理笔记
一:参考学习网址 npm: https://www.npmjs.com/package/mongoose 官网API:http://mongoosejs.com/docs/guide.html 二:在 ...
- linux命令启动关闭firewalld防火墙,添加端口
firewalld管理防火墙常用命令 1.查看防火墙的状态 [root@localhost HMK]# firewall-cmd --state 查看防火墙的运行状态 not running [r ...
- 如何在Web应用里消费SAP Leonardo的机器学习API
去年5月的时候,Jerry曾经写了一篇文章:使用Java程序消费SAP Leonardo的机器学习API,而最近另外做的一个项目,需要在Web应用里做同样的事情. 因为有了前一篇文章的铺垫,避免了很多 ...
- Oracle学习笔记——imp还原数据库
1. 创建用户及指定用户名密码 create user [用户名] identified by [密码]; create user fskxjsxy identified by fskxjs ...
- [LeetCode] 784. 字母大小写全排列 ☆☆☆(回溯、深度优先遍历)
https://leetcode-cn.com/problems/letter-case-permutation/solution/shen-du-you-xian-bian-li-hui-su-su ...
- 安装jdk配置环境变量后jps command not found
配置Java环境变量的时候一般是 vi /etc/profile 然后按两个大写的G就会跑到最后一行去,然后配置写入下文: 这个时候你jps查看Java的进程会出现: 分析原因: 一般是配置之后,没有 ...