2019CVPR:Classification-Reconstruction Learning for Open-Set Recogition(Abstract)
Abstract
Open-set classification is a problem of handling 'unknown' classes that are not contained in the training dataset, whereas traditional classifiers assume that only known classes appear in the test environment. Existing open-set classifiers rely on deep networks trained in a supervised manner on known classes in the training set; this causes specialization of learned representations to known classes and makes it hard to distinguish unknowns from knowns. In contrast, we train networks for joint classification and reconstruction of input data. This enhances the learned representation so as to preserve information useful for separating unknowns from knowns, as well as to discriminate classes of knowns. Our novel Classification-Reconstruction learning for Open-Set Recognition (CROSR) utilizes latent representations for reconstruction and enables robust unknown detection without harming the known-class classification accuracy. Extensive experiments reveal that the peoposed method outperforms existing deep open-set classifiers in multiple standard datasets and is robust to diverse outliers.
开集分类是一种处理训练数据集中不包含“未知”类的问题,然而,传统分类器假设,只有已知类出现在测试环境中。现有的开集分类器依赖于深度网络,该网络是以监督方式在已知类训练集中训练的;这就会导致,学习表示,对已知类的特化,并且使其难以区分已知和未知。相反,我们我们训练网络以进行输入数据的联合分类和重建。这增强了学习的表示,以便保存用于区分未知和已知的信息,同时对已知分类。
我们有一种新的分类-重建学习(CROSR),针对开集识别,使用潜在表示进行重建,并且能够在不损害已知级分类准确度的情况下实现稳健的未知检测。大量实验表明,我们提出的方法在多个标准数据集中优于现有的深度开集分类器,并且对各种异常具有鲁棒性。
2019CVPR:Classification-Reconstruction Learning for Open-Set Recogition(Abstract)的更多相关文章
- Gan-based zero-shot learning 论文整理
1 Feature Generating Networks for Zero-Shot Learning Suffering from the extreme training data imbala ...
- 基于Deep Learning 的视频识别方法概览
深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会 ...
- 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...
- How To Improve Deep Learning Performance
如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...
- What are the advantages of different classification algorithms?
What are the advantages of different classification algorithms? For instance, if we have large train ...
- <Machine Learning - 李宏毅> 学习笔记
<Machine Learning - 李宏毅> 学习笔记 b站视频地址:李宏毅2019国语 第一章 机器学习介绍 Hand crafted rules Machine learning ...
- 论文笔记之:Human-level control through deep reinforcement learning
Human-level control through deep reinforcement learning Nature 2015 Google DeepMind Abstract RL 理论 在 ...
- 2016CVPR论文集
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...
- CVPR2016 Paper list
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...
随机推荐
- Linux命令行——scp命令
原创声明:本文系博主原创文章,转载或引用请注明出处. scp 一般格式: scp [option] src dst 1. src和dst格式为: [user@]host:/path/to/file ...
- Linux磁盘分区的实用管理命令
系统环境:Centos6.7 命令信息: 1.lsblk 列出分区信息,可以查看分区的光在目录和使用情况 (读取内存中的分区表信息) 2.fdisk 用来创建MBR分区(也可以创建GPT分区,但是 ...
- Task底层实现原理探秘
.NET 4包含新名称空间System.Threading.Tasks,它 包含的类抽象出了线程功能, 在底层使用ThreadPool. 任务表示应完成的某个单元的工作. 这个单元的工作可以在单独的线 ...
- koa2+redis+jwt token验证,简单注册登录
首先新建文件夹命名koa-server,npm init,相关包的安装就不说了,这是我的package.json 新建index.js文件,编码如下,config全局配置不用管,redis是一个简单的 ...
- react-缓存
目录结构: 用到缓存的地方: 缓存的方法 清楚缓存
- [人物存档]【AI少女】【捏脸数据】日式校服
点击下载(城通网盘):AISChaF_20191031221657757.png 点击下载(城通网盘):1572457456165c77.zip
- word文档在线预览地址
文档网址 http://www.officeweb365.com/Default/Docview 对接 http://ow365.cn/?i=19604&furl=http:://www.ba ...
- java服务宕机原因查询
背景 在java服务项目上线之后经常会出现宕机的情况 常见原因 内存溢出 1.查到服务进程号 [root@wms ~]# ps -ef|grep java root 6399 6069 0 08:57 ...
- ListView如何获取点击单元格内容
Point m_MBRpt = listView1.PointToClient(Control.MousePosition); ListViewItem lstrow = lis ...
- Redis Java连接池调研
Redis Java连接池调研 线上服务,由于压力大报错RedisTimeOut,但是需要定位到底问题出现在哪里? 查看Redis慢日志,slowlog get 发现耗时最大的也是11000us也就是 ...