图像识别领域的一些code

转自:http://blog.163.com/pz124578@126/blog/static/23522694201343110495537/

ps:里面的一些方法都是目前最新的。每个领域当然可以做大量扩充,根据需要嘛。

Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!

Feature Detection and Description

General Libraries:

  • VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. SeeModern features: Software – Slides providing a demonstration of VLFeat and also links to other software. Check also VLFeat hands-on session training
  • OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

Fast Keypoint Detectors for Real-time Applications:

  • FAST – High-speed corner detector implementation for a wide variety of platforms
  • AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).

Binary Descriptors for Real-Time Applications:

  • BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
  • ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)
  • BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
  • FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)

SIFT and SURF Implementations:

Other Local Feature Detectors and Descriptors:

  • VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
  • LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
  • Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).

Global Image Descriptors:

  • GIST – Matlab code for the GIST descriptor
  • CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)

Feature Coding and Pooling

  • VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.
  • Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)

Convolutional Nets and Deep Learning

  • EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.
  • Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.
  • Deep Learning - Various links for deep learning software.

Part-Based Models

Attributes and Semantic Features

Large-Scale Learning

  • Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
  • LIBLINEAR – Library for large-scale linear SVM classification.
  • VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.

Fast Indexing and Image Retrieval

  • FLANN – Library for performing fast approximate nearest neighbor.
  • Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
  • ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).
  • INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).

Object Detection

3D Recognition

Action Recognition


Datasets

Attributes

  • Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
  • aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
  • FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
  • PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
  • LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
  • Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.
  • SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
  • ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
  • Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.
  • Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.

Fine-grained Visual Categorization

Face Detection

  • FDDB – UMass face detection dataset and benchmark (5,000+ faces)
  • CMU/MIT – Classical face detection dataset.

Face Recognition

  • Face Recognition Homepage – Large collection of face recognition datasets.
  • LFW – UMass unconstrained face recognition dataset (13,000+ face images).
  • NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
  • CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
  • FERET – Classical face recognition dataset.
  • Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.
  • SCFace – Low-resolution face dataset captured from surveillance cameras.

Handwritten Digits

  • MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.

Pedestrian Detection

Generic Object Recognition

  • ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
  • Tiny Images – 80 million 32x32 low resolution images.
  • Pascal VOC – One of the most influential visual recognition datasets.
  • Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.
  • MIT LabelMe – Online annotation tool for building computer vision databases.

Scene Recognition

Feature Detection and Description

  • VGG Affine Dataset – Widely used dataset for measuring performance of feature detection and description. CheckVLBenchmarksfor an evaluation framework.

Action Recognition

RGBD Recognition


Related Courses

图像识别领域的一些code的更多相关文章

  1. Code First :使用Entity. Framework编程(5) ----转发 收藏

    第五章 对数据库映射使用默认规则与配置 到目前为止我们已经领略了Code First的默认规则与配置对属性.类间关系的影响.在这两个领域内,Code First不仅影响模型也影响数据库.在这一章,你将 ...

  2. 【译著】Code First :使用Entity. Framework编程(5)

    第五章 对数据库映射使用默认规则与配置 到目前为止我们已经领略了Code First的默认规则与配置对属性.类间关系的影响.在这两个领域内,Code First不仅影响模型也影响数据库.在这一章,你将 ...

  3. 使用pytorch完成kaggle猫狗图像识别

    kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架 ...

  4. CV界的明星人物们

    CV界的明星人物们 来自:http://blog.csdn.net/necrazy/article/details/9380151,另外根据自己关注的地方,加了点东西. 今天在cvchina论坛上看到 ...

  5. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  6. paper 92:图像视觉博客资源2之MIT斯坦福CMU

    收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享 ...

  7. (转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU

          首页 视界智尚 算法技术 每日技术 来打我呀 注册     OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的 ...

  8. 【转载】Deep Learning(深度学习)学习笔记整理

    http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...

  9. 深度学习算法实践15---堆叠去噪自动编码机(SdA)原理及实现

    我们讨论了去噪自动编码机(dA),并讨论了Theano框架实现的细节.在本节中,我们将讨论去噪自动编码机(dA)的主要应用,即组成堆叠自动编码机(SdA),我们将以MNIST手写字母识别为例,用堆叠自 ...

随机推荐

  1. matlab fspecial 用法解释

    Matlab 的fspecial函数用法 fspecial函数用于建立预定义的滤波算子,其语法格式为:h = fspecial(type)h = fspecial(type,para)其中type指定 ...

  2. Bitmap之extractAlpha函数抽取alpha值

    package com.loaderman.customviewdemo; import android.app.Activity; import android.graphics.Bitmap; i ...

  3. 【转】地球坐标系 (WGS-84) 到火星坐标系 (GCJ-02) 的转换算法 C#

    // // Copyright (C) 1000 - 9999 Somebody Anonymous // NO WARRANTY OR GUARANTEE // using System; name ...

  4. Oracle查看表结构的方法【我】

    Oracle查看表结构的方法   方法一: 在命令窗口下输入   DESC table_name;  回车       方法二: 在sql窗口下   SELECT DBMS_METADATA.GET_ ...

  5. JVM参数详细说明

    JVM参数详细说明   答: 下面红色部分是常用参数 -XX:CMSInitiatingPermOccupancyFraction:当永久区占用率达到这一百分比时,启动CMS回收-XX:CMSInit ...

  6. PAT 甲级 1037 Magic Coupon (25 分) (较简单,贪心)

    1037 Magic Coupon (25 分)   The magic shop in Mars is offering some magic coupons. Each coupon has an ...

  7. 反查BOM, 找出它的上阶

    转自:https://blog.csdn.net/zhongguomao/article/details/80172441 查询物料的上阶方法有三: 1. CS15  可直接查出物料的上阶直至顶阶物料 ...

  8. nginx conf 文件

    server { listen ; server_name local.light.com; index index.html index.htm index.php; root /home/wwwr ...

  9. iOS-UIImageView和UIImage

    UIImage self.imageView.contentMode = UIViewContentModeCenter;// 图片的内容模式 [self.imageView setFrame:CGR ...

  10. python的jenkins三方包

    jenkinsapi 比较重,实现不好 python-jenkins 比较轻,建议使用,可以进行二次开发和封装