图像识别领域的一些code

转自:http://blog.163.com/pz124578@126/blog/static/23522694201343110495537/

ps:里面的一些方法都是目前最新的。每个领域当然可以做大量扩充,根据需要嘛。

Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!

Feature Detection and Description

General Libraries:

  • VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. SeeModern features: Software – Slides providing a demonstration of VLFeat and also links to other software. Check also VLFeat hands-on session training
  • OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

Fast Keypoint Detectors for Real-time Applications:

  • FAST – High-speed corner detector implementation for a wide variety of platforms
  • AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).

Binary Descriptors for Real-Time Applications:

  • BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
  • ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)
  • BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
  • FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)

SIFT and SURF Implementations:

Other Local Feature Detectors and Descriptors:

  • VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
  • LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
  • Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).

Global Image Descriptors:

  • GIST – Matlab code for the GIST descriptor
  • CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)

Feature Coding and Pooling

  • VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.
  • Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)

Convolutional Nets and Deep Learning

  • EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.
  • Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.
  • Deep Learning - Various links for deep learning software.

Part-Based Models

Attributes and Semantic Features

Large-Scale Learning

  • Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
  • LIBLINEAR – Library for large-scale linear SVM classification.
  • VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.

Fast Indexing and Image Retrieval

  • FLANN – Library for performing fast approximate nearest neighbor.
  • Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
  • ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).
  • INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).

Object Detection

3D Recognition

Action Recognition


Datasets

Attributes

  • Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
  • aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
  • FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
  • PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
  • LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
  • Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.
  • SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
  • ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
  • Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.
  • Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.

Fine-grained Visual Categorization

Face Detection

  • FDDB – UMass face detection dataset and benchmark (5,000+ faces)
  • CMU/MIT – Classical face detection dataset.

Face Recognition

  • Face Recognition Homepage – Large collection of face recognition datasets.
  • LFW – UMass unconstrained face recognition dataset (13,000+ face images).
  • NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
  • CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
  • FERET – Classical face recognition dataset.
  • Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.
  • SCFace – Low-resolution face dataset captured from surveillance cameras.

Handwritten Digits

  • MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.

Pedestrian Detection

Generic Object Recognition

  • ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
  • Tiny Images – 80 million 32x32 low resolution images.
  • Pascal VOC – One of the most influential visual recognition datasets.
  • Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.
  • MIT LabelMe – Online annotation tool for building computer vision databases.

Scene Recognition

Feature Detection and Description

  • VGG Affine Dataset – Widely used dataset for measuring performance of feature detection and description. CheckVLBenchmarksfor an evaluation framework.

Action Recognition

RGBD Recognition


Related Courses

图像识别领域的一些code的更多相关文章

  1. Code First :使用Entity. Framework编程(5) ----转发 收藏

    第五章 对数据库映射使用默认规则与配置 到目前为止我们已经领略了Code First的默认规则与配置对属性.类间关系的影响.在这两个领域内,Code First不仅影响模型也影响数据库.在这一章,你将 ...

  2. 【译著】Code First :使用Entity. Framework编程(5)

    第五章 对数据库映射使用默认规则与配置 到目前为止我们已经领略了Code First的默认规则与配置对属性.类间关系的影响.在这两个领域内,Code First不仅影响模型也影响数据库.在这一章,你将 ...

  3. 使用pytorch完成kaggle猫狗图像识别

    kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架 ...

  4. CV界的明星人物们

    CV界的明星人物们 来自:http://blog.csdn.net/necrazy/article/details/9380151,另外根据自己关注的地方,加了点东西. 今天在cvchina论坛上看到 ...

  5. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  6. paper 92:图像视觉博客资源2之MIT斯坦福CMU

    收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享 ...

  7. (转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU

          首页 视界智尚 算法技术 每日技术 来打我呀 注册     OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的 ...

  8. 【转载】Deep Learning(深度学习)学习笔记整理

    http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...

  9. 深度学习算法实践15---堆叠去噪自动编码机(SdA)原理及实现

    我们讨论了去噪自动编码机(dA),并讨论了Theano框架实现的细节.在本节中,我们将讨论去噪自动编码机(dA)的主要应用,即组成堆叠自动编码机(SdA),我们将以MNIST手写字母识别为例,用堆叠自 ...

随机推荐

  1. matlab fspecial 用法解释

    Matlab 的fspecial函数用法 fspecial函数用于建立预定义的滤波算子,其语法格式为:h = fspecial(type)h = fspecial(type,para)其中type指定 ...

  2. Vue引入远程JS文件

    问题 最近在使用 Vue 做东西,用到钉钉扫描登录的功能,这里需要引入远程的 js 文件,因为 Vue 的方式跟之前的不太一样,又不想把文件下载到本地应用,找了一下解决的方法,貌似都需要引入第三方的库 ...

  3. Android Studio 3.5新特性

    Android Studio 3.5新特性     原文链接:https://blog.csdn.net/jklwan/article/details/99974869 Android Studio ...

  4. python 经典排序算法

    python 经典排序算法 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存.常见的内部排序算 ...

  5. ubuntu server 18.04 单机安装openstack

    https://ubuntu.com/openstack/install#workstation-deployment sudo snap install microstack --classic - ...

  6. Apache配置优化之开启KeepAlive

    在HTTP 1.0中和Apache服务器的一次连接只能发出一次HTTP请求,而KeepAlive参数支持HTTP 1.1版本的一次连接,多次传输功能,这样就可以在一次连接中发出多个HTTP请求.从而避 ...

  7. TrippleDESCSPEncrypt 加密解密试试看

    public class TrippleDESCSPEncrypt { //12个字符 private static string customIV = "4vHKRj3yfzU=" ...

  8. Blender模型导入进Unity,旋转缩放的调整

    Blender跟Unity的XYZ轴不同的原因,导致Blender模型导入Unity之后会发生模型朝向不对. 请先看看下边这个情况: 首先,Blender物体模式下,对模型进行 旋转 缩放,将会在右边 ...

  9. C/C++.控制台输入(cin/getchar)

    1.类似的函数有:cin.getchar.fgetc 等 2.问题: 最后的"\n"都不取出来... 2.1.对策:(ZC:下面是 我自己使用后的感受) (1)fflush(std ...

  10. 移动架构之MVP框架

    MVP是在开发中常用的框架,要了解其原理,先要从了解MVC开始,这里就对MVP框架做一个简单的介绍 MVC MVC为Model,View与Controllor的缩写 Model:业务逻辑和实体模型 V ...