python之NLP数据清洗
1、知识点
"""
安装模块:bs4 nltk gensim
nltk:处理英文
1、安装
2、nltk.download() 下载相应的模块 英文数据处理:
1、去掉html标签 example = BeautifulSoup(df['review'][1000],'html.parser').get_text()
2、移除标点 example_letter = re.sub(r'[^a-zA-Z]',' ',example)
3、切分成词/token words = example_letter.lower().split()
4、去掉停用词 例如:the a an it's
stopwords = {}.fromkeys([line.rstrip() for line in open('./stopwords.txt')])
words_nostop = [w for w in words if w not in stopwords]
5、重组为新的句子 词向量解决方案:
1、one-hot编码
缺点:这种方案浪费存储空间还是次要的,更重要的是词与词(向量与向量)之间没有相关性,计算机完全无法进行哪怕一丁点的理解和处理
2、基于奇异值分解(SVD)的方法
步骤:a)第一步是通过大量已有文档统计形成词空间矩阵X,有两种办法。
一种是统计出某篇文档中各个词出现的次数,假设词的数目是W、文档篇数是M,则此时X的维度是W*M;
第二种方法是针对某个特定词,统计其前后文中其它词的出现频次,从而形成W*W的X矩阵。
b)第二步是针对X矩阵进行SVD分解,得到特征值,根据需要截取前k个特征值及对应的前k个特征向量,
那么前k个特征向量构成的矩阵维度是W*k,这就构成了所有W个词的k维表示向量
缺点:
1、需要维护一个极大的词空间稀疏矩阵X,而且随着新词的出现还会经常发生变化;
2、SVD运算量大,而且每增减一个词或文档之后,都需要重新计算
3、构建一个word2vec模型:通过大量文档迭代学习其中的参数及已有词的编码结果,这样每新来一篇文档都不用修改已有模型,只需要再次迭代计算参数和词向量即可
举例:我爱python和java
a)CBOW算法: 输入:我爱, 目标值:python和java
CBOW算法使用上下文窗口内词向量作为输入,将这些向量求和(或取均值)后,求得与输出词空间的相关性分布,
进而使用softmax函数得到在整个输出词空间上的命中概率,与目标词one-hot编码的交叉熵即为loss值,
通过loss针对输入和输出词向量的梯度,即可使用梯度下降(gradient descent)法得到一次针对输入和输出词向量的迭代调整。 b)Skip-Gram算法: 输入:python和java, 目标值:我爱
Skip-Gram算法使用目标词向量作为输入,求得其与输出词空间的相关性分布,
进而使用softmax函数得到在整个输出词空间上的命中概率,与one-hot编码的上下文词逐一计算交叉熵,
求和后即为loss值,通过loss针对输入和输出词向量的梯度,
即可使用梯度下降(gradient descent)法得到一次针对输入和输出词向量的迭代调整
"""
2、中文数据清洗(使用停用词)
import os
import re
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.linear_model import LogisticRegression
import nltk
from nltk.corpus import stopwords
import jieba
def clean_chineses_text(text):
"""
中文数据清洗 stopwords_chineses.txt存放在博客园文件中
:param text:
:return:
"""
text = BeautifulSoup(text, 'html.parser').get_text() #去掉html标签
text =jieba.lcut(text);
stopwords = {}.fromkeys([line.rstrip() for line in open('./stopwords_chineses.txt')]) #加载停用词(中文)
eng_stopwords = set(stopwords) #去掉重复的词
words = [w for w in text if w not in eng_stopwords] #去除文本中的停用词
return ' '.join(words)
3、英文数据清洗(使用停用词)
import os
import re
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.linear_model import LogisticRegression
import nltk
from nltk.corpus import stopwords
import jieba
def clean_english_text(text):
"""
英文数据清洗 stopwords_english.txt存放在博客园文件中
:param text:
:return:
"""
text = BeautifulSoup(text, 'html.parser').get_text() #去掉html标签
text = re.sub(r'[^a-zA-Z]', ' ', text) #只保留英文字母
words = text.lower().split() #全部小写
stopwords = {}.fromkeys([line.rstrip() for line in open('./stopwords_english.txt')]) #加载停用词(中文)
eng_stopwords = set(stopwords) #去掉重复的词
words = [w for w in words if w not in eng_stopwords] #去除文本中的停用词
print(words)
return ' '.join(words) if __name__ == '__main__':
text = "ni hao ma ,hello ! my name is haha'. ,<br/> "
a = clean_english_text(text)
print(a) test1 = "你在干嘛啊,怎么不回复我消息!,对了“你妈在找你”。"
b = clean_chineses_text(test1)
print(b)
4、nltk的停用词进行数据清洗
def clean_english_text_from_nltk(text):
"""
使用nltk的停用词对英文数据进行清洗
:param text:
:return:
"""
text = BeautifulSoup(text,'html.parser').get_text() #去掉html标签
text = re.sub(r'[^a-zA-Z]',' ',text) #除去标点符号
words = text.lower().split() #转为小写并切分
stopwords = nltk.corpus.stopwords.words('english') #使用nltk的停用词
wordList =[word for word in words if word not in stopwords]
return ' '.join(wordList)
python之NLP数据清洗的更多相关文章
- python--数据清洗
1.数据错误: 错误类型– 脏数据或错误数据• 比如, Age = -2003– 数据不正确• '0' 代表真实的0,还是代表缺失– 数据不一致• 比如收入单位是万元,利润单位是元,或者一个单位是美元 ...
- python之ETL数据清洗案例源代码
#python语言 import pandas as pd import time data = pd.read_excel('ETL_数据清洗挑战.xlsx','测试数据',dtype=str)#读 ...
- 利用python进行数据分析—数据清洗记录3,map,apply,
社会心态调查报告 导语: 时代决定心态,心态映照时代.社会心态产生于社会个体心理,又以整体的形态存在,进而影响着每个社会成员的社会价值取向和行为方式,影响着国家经济政治和社会发展大局.良好的社会心 ...
- 使用python脚本进行数据清洗(1)
1. 原始表 CREATE TABLE ml_100k (userid INT, movieid INT, rating INT, unixtime STRING) ROW FORMAT DELIMI ...
- Viterbi 算法 Python实现 [NLP学习一]
最近思考了一下未来,结合老师的意见,还是决定挑一个方向开始研究了,虽然个人更喜欢鼓捣.深思熟虑后,结合自己的兴趣点,选择了NLP方向,感觉比纯粹的人工智能.大数据之类的方向有趣多了,个人还是不适合纯粹 ...
- Python 基于 NLP 的文本分类
这是前一段时间在做的事情,有些python库需要python3.5以上,所以mac请先升级 brew安装以下就好,然后Preference(comm+',')->Project: Text-Cl ...
- Python 爬虫 大量数据清洗 ---- sql语句优化
. 问题描述 在做爬虫的时候,数据量很大,大约有五百百万条数据,假设有个字段是conmany_name(拍卖公司名称),我们现在需要从五百万条数据里面查找出来五十家拍卖公司, 并且要求字段 time( ...
- python简单的数据清洗,数据筛选方法归类
创建数组有两种方式,1.直接赋值 2.随机变量生成随机生成包括4种:np.arange(20),np.linspace(0,10,5),np.logspace(0,2,5),np.random.ran ...
- python之NLP词性标注
1.知识点 包括中文和英文的词性标注主要使用的库是nltk和jiaba 2.代码 # coding = utf-8 import nltk from nltk.corpus import stopwo ...
随机推荐
- STM32——CAN总线过滤器设置
STM32CAN控制器每个筛选器组由两个32位的寄存器组成. 根据所需位宽的不同,各个筛选器可配置成16位或32位模式(如下图,当FSCx=1为32位模式,FSCx=0时为16位模式).同时,筛选器的 ...
- 八:MVC初始化数据库
生成数据库策略: CreateDatabaseIfNotExists:方法会在没有数据库时创建一个,这是默认行为. DropCreateDatabaseIfModelChanges:如果我们在在模型改 ...
- [Abp vNext微服务实践] - vue-element-admin管理Identity
一.简介 abp vNext微服务框架中已经提供通用权限和用户角色管理模块,管理UI使用的是MVC模式,不适用于国内主打的MVVM开发模式.在前端框架选型后笔者决定改造abp vNext微服务框架中原 ...
- P4016 负载平衡问题(最小费用最大流)
P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬 ...
- idea目录因包名而未合并、逐级显示的问题
如图包名里含有多个.,从而导致一个加载时出现了好多层.. 只要右键java目录,转换为source root就行.
- PHP配置文件(php.ini)详解
[PHP] ; PHP还是一个不断发展的工具,其功能还在不断地删减 ; 而php.ini的设置更改可以反映出相当的变化, ; 在使用新的PHP版本前,研究一下php.ini会有好处的 ;;;;;;;; ...
- BZOJ 3435 / Luogu 3920 [WC2014]紫荆花之恋 (替罪羊树 动态点分治 套 Treap)
题意 略 分析 引用PoPoQQQ的话 吾辈有生之年终于把这道题切了...QAQ (蒟蒻狂笑) Orz PoPoQQQ,我又抄PoPoQQQ的题解了 - 突然发现有旋Treap没那么难写 学习了一波C ...
- zabbix添加监控项以及常用的键值
zabbix自身提供了丰富的监控项,下面以“cpu空闲值”为例介绍zabbix如何添加新的监控项 1.创建主机群组 配置——主机群组——创建主机群组 2.创建主机 配置——主机——创建主机 3.添 ...
- while循环与do. . . while循环语句
㈠导入 向页面中输出连续的数字 var n = 1; document.write(n++ +"<br />"); ㈡while循环 ⑴循环语句:通过循环语句可以反复的 ...
- 洛谷P2135 方块消除
洛谷题目链接 动态规划(真毒瘤!) 变量声明: $val[i]$:表示第$i$块颜色 $num[i]$:表示第$i$块颜色数量 $sum[i]$:表示$num$的前缀和 我们设计状态$f[l][r][ ...