http://poj.org/problem?id=1222

竟然我理解了两天。。。。。

首先先来了解异或方程组(或者说mod2方程组,modk的话貌似可以这样拓展出来)

对于一些我们需要求出的变量a[1~n],我们现在知道n个方程组(有解的情况下),每个方程均是类似原版消元那样带了个系数的,只不过这个系数只有0和1,那么我们第i个方程用x[i, 1~n]表示a[1~n]的系数,然后x[n+1]为这个方程的右式

那么这些方程组是这样的

(x[1,1]*a[1])^(x[1,2]*a[2])^...^(x[1,n]*a[n])=x[1, n+1]

(x[2,1]*a[1])^(x[2,2]*a[2])^...^(x[2,n]*a[n])=x[2, n+1]

...

(x[n,1]*a[1])^(x[n,2]*a[2])^...^(x[n,n]*a[n])=x[n, n+1]

而我们知道,异或操作有交换律、结合律。那么对于有一个相同的项,我们要消掉这个项,得到一个相同的方程,我们直接方程异或消掉即可。也就是说,例如两个方程

(x[1,1]*a[1])^(x[1,2]*a[2])^...^(x[1,n]*a[n])=x[1, n+1]

(x[2,1]*a[1])^(x[2,2]*a[2])^...^(x[2,n]*a[n])=x[2, n+1]

当x[1, 1]=x[2, 1]=1时,我们要消掉x[2, 1],那么我们将这两个式子的所有项都异或就行了,原理就是a=c, b=d, a^b=c^d

然后就能得出个倒三角,最后回代就行了(因为前边的系数都是1了,所以不需要对A[i][i]进行操作)

在找每一列的矩阵时,我们注意只需要找到某一个方程的这一列的系数是1就行了,不需要最大(本来就没有最大),就能消掉所有这一列=1的方程。

然后注意回代的时候系数不是1的就不要异或了(因为本来就没用这个元素啊)

然后记住每次清空矩阵啊!!!我一直以为是我的思路错了,调试了好久,原来是数组没清。。。。

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <cmath>
  4. #include <string>
  5. #include <iostream>
  6. #include <algorithm>
  7. #include <queue>
  8. using namespace std;
  9. #define rep(i, n) for(int i=0; i<(n); ++i)
  10. #define for1(i,a,n) for(int i=(a);i<=(n);++i)
  11. #define for2(i,a,n) for(int i=(a);i<(n);++i)
  12. #define for3(i,a,n) for(int i=(a);i>=(n);--i)
  13. #define for4(i,a,n) for(int i=(a);i>(n);--i)
  14. #define CC(i,a) memset(i,a,sizeof(i))
  15. #define read(a) a=getint()
  16. #define print(a) printf("%d", a)
  17. #define dbg(x) cout << (#x) << " = " << (x) << endl
  18. #define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
  19. #define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
  20. inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
  21. inline const int max(const int &a, const int &b) { return a>b?a:b; }
  22. inline const int min(const int &a, const int &b) { return a<b?a:b; }
  23.  
  24. const int N=35;
  25. typedef int mtx[N][N];
  26. mtx a;
  27. void gauss(mtx A, int n) {
  28. for1(i, 1, n) {
  29. int now=i;
  30. while(!A[now][i] && now<=n) ++now;
  31. for1(j, 1, n+1) swap(A[now][j], A[i][j]);
  32. for1(j, i+1, n) if(A[j][i])
  33. for1(k, i, n+1) A[j][k]^=A[i][k];
  34. }
  35. for3(i, n, 1)
  36. for1(j, i+1, n) if(A[i][j]) A[i][n+1]^=A[j][n+1];
  37. }
  38. int main() {
  39. int cs=getint();
  40. for1(ttt, 1, cs) {
  41. CC(a, 0);
  42. for1(i, 1, 30) {
  43. read(a[i][31]);
  44. a[i][i]=1;
  45. if(i%6!=1) a[i][i-1]=1;
  46. if(i%6!=0) a[i][i+1]=1;
  47. if(i>6) a[i][i-6]=1;
  48. if(i<25) a[i][i+6]=1;
  49. }
  50. gauss(a, 30);
  51. printf("PUZZLE #%d\n", ttt);
  52. for1(i, 1, 30) {
  53. printf("%d ", a[i][31]); if(i%6==0) puts("");
  54. }
  55. }
  56. return 0;
  57. }

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

Note: 
1. It does not matter what order the buttons are pressed. 
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
Write a program to solve the puzzle.

Input

The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

Output

For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

Sample Input

  1. 2
  2. 0 1 1 0 1 0
  3. 1 0 0 1 1 1
  4. 0 0 1 0 0 1
  5. 1 0 0 1 0 1
  6. 0 1 1 1 0 0
  7. 0 0 1 0 1 0
  8. 1 0 1 0 1 1
  9. 0 0 1 0 1 1
  10. 1 0 1 1 0 0
  11. 0 1 0 1 0 0

Sample Output

  1. PUZZLE #1
  2. 1 0 1 0 0 1
  3. 1 1 0 1 0 1
  4. 0 0 1 0 1 1
  5. 1 0 0 1 0 0
  6. 0 1 0 0 0 0
  7. PUZZLE #2
  8. 1 0 0 1 1 1
  9. 1 1 0 0 0 0
  10. 0 0 0 1 0 0
  11. 1 1 0 1 0 1
  12. 1 0 1 1 0 1

Source

  

【POJ】1222 EXTENDED LIGHTS OUT(高斯消元)的更多相关文章

  1. POJ 1222 EXTENDED LIGHTS OUT (高斯消元)

    题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...

  2. POJ 1222 EXTENDED LIGHTS OUT [高斯消元XOR]

    题意: $5*6$网格里有一些灯告诉你一开始开关状态,按一盏灯会改变它及其上下左右的状态,问最后全熄灭需要按那些灯,保证有解 经典问题 一盏灯最多会被按一次,并且有很明显的异或性质 一个灯作为一个方程 ...

  3. poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8481   Accepted: 5479 Description In an ...

  4. POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组

    http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...

  5. POJ 1222【异或高斯消元|二进制状态枚举】

    题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题 ...

  6. POJ 1222 熄灯问题【高斯消元】

    <题目链接> 题目大意: 有一个5*6的矩阵,每一位是0或者1. 没翻转一位,它的上下左右的数字也为改变.(0变成1,1变成0).要把矩阵中所有的数都变成0.求最少翻转次数的方案,输出矩阵 ...

  7. [poj1222]EXTENDED LIGHTS OUT(高斯消元)

    题意:每个灯开启会使自身和周围的灯反转,要使全图的灯灭掉,判断灯开的位置. 解题关键:二进制高斯消元模板题. 复杂度:$O({n^3})$ #include<cstdio> #includ ...

  8. EXTENDED LIGHTS OUT (高斯消元)

    In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual ...

  9. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  10. POJ 1222 EXTENDED LIGHTS OUT(翻转+二维开关问题)

    POJ 1222 EXTENDED LIGHTS OUT 今天真是完美的一天,这是我在poj上的100A,留个纪念,马上就要期中考试了,可能后面几周刷题就没这么快了,不管怎样,为下一个200A奋斗, ...

随机推荐

  1. 2019寒假训练营寒假作业(二) MOOC的网络空间安全概论笔记部分

    视频课程--MOOC的网络空间安全概论笔记 第一章 网络空间安全概述 2001年,网络空间概念被首次提出: 网络空间安全框架: 1.设备层安全: 可通过截获电磁辐射获取计算机信息.通过硬件木马(恶意电 ...

  2. <Effective C++>读书摘要--Templates and Generic Programming<一>

    1.The initial motivation for C++ templates was straightforward: to make it possible to create type-s ...

  3. OSG学习:使用已有回调示例

    回调的类型有很多种,一般很容易就想到的是UpdateCallBack,或者EventCallBack,回调的意思就是说,你可以规定在某件事情发生时启动一个函数,这个函数可能做一些事情.这个函数就叫做回 ...

  4. 【Linux】- Ubuntu守护进程supervisor

    linux的守护进程类似于windows的服务.linux通过supervisor创建守护进程. 1.安装supervisor sudo apt-get install supervisor 安装成功 ...

  5. 火狐浏览器(FireFox)安装Flash插件失败处理方法

    最近不知道怎么了,总是嫌弃IE,可能是被网络流量监测的网址给搞得了,弄了火狐浏览器,也安装了猎豹,这里不对浏览器做评价 好多朋友安装好火狐(FireFox)的时候发现之前不是有装IE的Flash播放插 ...

  6. MongoDb企业应用实战(一) 写在MongoDB应用介绍之前(ii)

    上一篇: MongoDb企业应用实战(一) 写在MongoDB应用介绍之前(i) 有段时间没跟大家去分享和探讨过一些问题,分享过一些经验了(失败过的,痛苦过的才最有看点啊,不知道各位同仁们怎么去看这个 ...

  7. 异常--try..catch

    class Program { static void Main(string[] args) { try { object obj = null; int N = (int)obj; } catch ...

  8. [剑指Offer] 56.删除链表中重复的结点

    题目描述 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3->3->4->4->5 处理后 ...

  9. hadoop中DataNode消失挂掉的原因及解决方法

    昨天在进行Hadoop实验时遇到一个问题,在sbin目录下输入jps命令,查看当前节点的状态时,意外发现DataNode节点不见了!!于是回忆了一下自己之前的操作过程,大概是因为将自己进入文件夹,将某 ...

  10. [洛谷P3975][TJOI2015]弦论

    题目大意:求一个字符串的第$k$大字串,$t$表示长得一样位置不同的字串是否算多个 题解:$SAM$,先求出每个位置可以到达多少个字串($Right$数组),然后在转移图上$DP$,若$t=1$,初始 ...