http://poj.org/problem?id=1222

竟然我理解了两天。。。。。

首先先来了解异或方程组(或者说mod2方程组,modk的话貌似可以这样拓展出来)

对于一些我们需要求出的变量a[1~n],我们现在知道n个方程组(有解的情况下),每个方程均是类似原版消元那样带了个系数的,只不过这个系数只有0和1,那么我们第i个方程用x[i, 1~n]表示a[1~n]的系数,然后x[n+1]为这个方程的右式

那么这些方程组是这样的

(x[1,1]*a[1])^(x[1,2]*a[2])^...^(x[1,n]*a[n])=x[1, n+1]

(x[2,1]*a[1])^(x[2,2]*a[2])^...^(x[2,n]*a[n])=x[2, n+1]

...

(x[n,1]*a[1])^(x[n,2]*a[2])^...^(x[n,n]*a[n])=x[n, n+1]

而我们知道,异或操作有交换律、结合律。那么对于有一个相同的项,我们要消掉这个项,得到一个相同的方程,我们直接方程异或消掉即可。也就是说,例如两个方程

(x[1,1]*a[1])^(x[1,2]*a[2])^...^(x[1,n]*a[n])=x[1, n+1]

(x[2,1]*a[1])^(x[2,2]*a[2])^...^(x[2,n]*a[n])=x[2, n+1]

当x[1, 1]=x[2, 1]=1时,我们要消掉x[2, 1],那么我们将这两个式子的所有项都异或就行了,原理就是a=c, b=d, a^b=c^d

然后就能得出个倒三角,最后回代就行了(因为前边的系数都是1了,所以不需要对A[i][i]进行操作)

在找每一列的矩阵时,我们注意只需要找到某一个方程的这一列的系数是1就行了,不需要最大(本来就没有最大),就能消掉所有这一列=1的方程。

然后注意回代的时候系数不是1的就不要异或了(因为本来就没用这个元素啊)

然后记住每次清空矩阵啊!!!我一直以为是我的思路错了,调试了好久,原来是数组没清。。。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=35;
typedef int mtx[N][N];
mtx a;
void gauss(mtx A, int n) {
for1(i, 1, n) {
int now=i;
while(!A[now][i] && now<=n) ++now;
for1(j, 1, n+1) swap(A[now][j], A[i][j]);
for1(j, i+1, n) if(A[j][i])
for1(k, i, n+1) A[j][k]^=A[i][k];
}
for3(i, n, 1)
for1(j, i+1, n) if(A[i][j]) A[i][n+1]^=A[j][n+1];
}
int main() {
int cs=getint();
for1(ttt, 1, cs) {
CC(a, 0);
for1(i, 1, 30) {
read(a[i][31]);
a[i][i]=1;
if(i%6!=1) a[i][i-1]=1;
if(i%6!=0) a[i][i+1]=1;
if(i>6) a[i][i-6]=1;
if(i<25) a[i][i+6]=1;
}
gauss(a, 30);
printf("PUZZLE #%d\n", ttt);
for1(i, 1, 30) {
printf("%d ", a[i][31]); if(i%6==0) puts("");
}
}
return 0;
}

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

Note: 
1. It does not matter what order the buttons are pressed. 
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
Write a program to solve the puzzle.

Input

The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

Output

For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

Source

  

【POJ】1222 EXTENDED LIGHTS OUT(高斯消元)的更多相关文章

  1. POJ 1222 EXTENDED LIGHTS OUT (高斯消元)

    题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...

  2. POJ 1222 EXTENDED LIGHTS OUT [高斯消元XOR]

    题意: $5*6$网格里有一些灯告诉你一开始开关状态,按一盏灯会改变它及其上下左右的状态,问最后全熄灭需要按那些灯,保证有解 经典问题 一盏灯最多会被按一次,并且有很明显的异或性质 一个灯作为一个方程 ...

  3. poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8481   Accepted: 5479 Description In an ...

  4. POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组

    http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...

  5. POJ 1222【异或高斯消元|二进制状态枚举】

    题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题 ...

  6. POJ 1222 熄灯问题【高斯消元】

    <题目链接> 题目大意: 有一个5*6的矩阵,每一位是0或者1. 没翻转一位,它的上下左右的数字也为改变.(0变成1,1变成0).要把矩阵中所有的数都变成0.求最少翻转次数的方案,输出矩阵 ...

  7. [poj1222]EXTENDED LIGHTS OUT(高斯消元)

    题意:每个灯开启会使自身和周围的灯反转,要使全图的灯灭掉,判断灯开的位置. 解题关键:二进制高斯消元模板题. 复杂度:$O({n^3})$ #include<cstdio> #includ ...

  8. EXTENDED LIGHTS OUT (高斯消元)

    In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual ...

  9. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  10. POJ 1222 EXTENDED LIGHTS OUT(翻转+二维开关问题)

    POJ 1222 EXTENDED LIGHTS OUT 今天真是完美的一天,这是我在poj上的100A,留个纪念,马上就要期中考试了,可能后面几周刷题就没这么快了,不管怎样,为下一个200A奋斗, ...

随机推荐

  1. Android框架 与 源码结构

    一. Android 框架 Android框架层级 : Android 自下 而 上 分为 4层; -- Linux内核层; -- 各种库 和 Android运行环境层; -- 应用框架层; -- 应 ...

  2. 《软件工程实践》第五次作业-WordCount进阶需求 (结对第二次)

    在文章开头给出结对同学的博客链接.本作业博客的链接.你所Fork的同名仓库的Github项目地址 本作业博客链接 github pair c 031602136魏璐炜博客 031602139徐明盛博客 ...

  3. YaoLingJump开发者日志(二)

      熟悉了一点LGame里的套路,可以正式开工了.   增加了一个信息栏,显示得分.硬币数.生命值和当前关卡(仿照了超级玛丽的布局).   准备瑶玲的各种动画(静止.奔跑.跳跃.趴下.休息和死亡等). ...

  4. PHPCMSV9 黄页新闻、产品、商机均无法浏览具体信息,显示您没有访问该信息的权限!

    原帖地址:http://bbs.phpcms.cn/forum.php?mod=viewthread&tid=294956&highlight=%C3%BB%D3%D0%B7%C3%C ...

  5. QT分析之QPushButton的初始化

    原文地址:http://blog.163.com/net_worm/blog/static/127702419201001003326522/ 在简单的QT程序的第二行,声明了一个QPushButto ...

  6. InnoDB高并发原理

    一.并发控制 为啥要进行并发控制? 并发的任务对同一个临界资源进行操作,如果不采取措施,可能导致不一致,故必须进行并发控制(Concurrency Control). 技术上,通常如何进行并发控制? ...

  7. Codeforces VK Cup 2015 A.And Yet Another Bracket Sequence(后缀数组+平衡树+字符串)

    这题做得比较复杂..应该有更好的做法 题目大意: 有一个括号序列,可以对其进行两种操作: ·        向里面加一个括号,可以在开头,在结尾,在两个括号之间加. ·        对当前括号序列进 ...

  8. 【题解】SDOI2017树点涂色

    LCT强强!以前总是觉得LCT非常的难懂(当然现在也是的),但实际上它真的是很厉害的一种东西.它是一种动态的链剖分结构,其实就是对于剖分出来的重链使用LCT去进行维护.cut 与 link 两个操作让 ...

  9. POJ3461:Oulipo——题解

    http://poj.org/problem?id=3461 KMP板子,好久以前学过了,直接把板子粘上去即可. #include<cstdio> #include<cstring& ...

  10. 洛谷 P1311 选择客栈 解题报告

    P1311 选择客栈 题目描述 丽江河边有 \(n\) 家很有特色的客栈,客栈按照其位置顺序从 \(1\) 到 \(n\) 编号.每家客栈都按照某一种色调进行装饰(总共 \(k\) 种,用整数 \(0 ...