1、流模型

  首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象。

  不管是文件,还是套接字,还是管道,我们都可以把他们看作流。

  之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据;通过write,我们可以往流写入数据。现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,但是服务器还没有把数据传回来),这时候该怎么办?

  阻塞:阻塞是个什么概念呢?比如某个时候你在等快递,但是你不知道快递什么时候过来,而且你没有别的事可以干(或者说接下来的事要等快递来了才能做);那么你可以去睡觉了,因为你知道快递把货送来时一定会给你打个电话(假定一定能叫醒你)。

  非阻塞忙轮询:接着上面等快递的例子,如果用忙轮询的方法,那么你需要知道快递员的手机号,然后每分钟给他挂个电话:“你到了没?”

  很明显一般人不会用第二种做法,不仅显很无脑,浪费话费不说,还占用了快递员大量的时间。大部分程序也不会用第二种做法,因为第一种方法经济而简单,经济是指消耗很少的CPU时间,如果线程睡眠了,就掉出了系统的调度队列,暂时不会去瓜分CPU宝贵的时间片了。

2、缓存模型

  为了了解阻塞是如何进行的,我们来讨论缓冲区,以及内核缓冲区,最终把I/O事件解释清楚。缓冲区的引入是为了减少频繁I/O操作而引起频繁的系统调用(你知道它很慢的),当你操作一个流时,更多的是以缓冲区为单位进行操作,这是相对于用户空间而言。对于内核来说,也需要缓冲区。

  假设有一个管道,进程A为管道的写入方,B为管道的读出方。

  假设一开始内核缓冲区是空的,B作为读出方,被阻塞着。然后首先A往管道写入,这时候内核缓冲区由空的状态变到非空状态,内核就会产生一个事件告诉B该醒来了,这个事件姑且称之为“缓冲区非空”。

  但是“缓冲区非空”事件通知B后,B却还没有读出数据;且内核许诺了不能把写入管道中的数据丢掉这个时候,A写入的数据会滞留在内核缓冲区中,如果内核也缓冲区满了,B仍未开始读数据,最终内核缓冲区会被填满,这个时候会产生一个I/O事件,告诉进程A,你该等等(阻塞)了,我们把这个事件定义为“缓冲区满”。

  假设后来B终于开始读数据了,于是内核的缓冲区空了出来,这时候内核会告诉A,内核缓冲区有空位了,你可以从长眠中醒来了,继续写数据了,我们把这个事件叫做“缓冲区非满”

也许事件Y1已经通知了A,但是A也没有数据写入了,而B继续读出数据,知道内核缓冲区空了。这个时候内核就告诉B,你需要阻塞了!,我们把这个时间定为“缓冲区空”。

  这四个情形涵盖了四个I/O事件,缓冲区满,缓冲区空,缓冲区非空,缓冲区非满(注都是说的内核缓冲区,且这四个术语都是我生造的,仅为解释其原理而造)。这四个I/O事件是进行阻塞同步的根本。(如果不能理解“同步”是什么概念,请学习操作系统的锁,信号量,条件变量等任务同步方面的相关知识)。

3、常见模型

  然后我们来说说阻塞I/O的缺点。但是阻塞I/O模式下,一个线程只能处理一个流的I/O事件。如果想要同时处理多个流,要么多进程(fork),要么多线程(pthread_create),很不幸这两种方法效率都不高。

  于是再来考虑非阻塞忙轮询的I/O方式,我们发现我们可以同时处理多个流了(把一个流从阻塞模式切换到非阻塞模式再此不予讨论):

while true {
for i in stream[]; {
if i has data
read until unavailable
}
}

  我们只要不停的把所有流从头到尾问一遍,又从头开始。这样就可以处理多个流了,但这样的做法显然不好,因为如果所有的流都没有数据,那么只会白白浪费CPU。这里要补充一点,阻塞模式下,内核对于I/O事件的处理是阻塞或者唤醒,而非阻塞模式下则把I/O事件交给其他对象(后文介绍的select以及epoll)处理甚至直接忽略。

  为了避免CPU空转,可以引进了一个代理(一开始有一位叫做select的代理,后来又有一位叫做poll的代理,不过两者的本质是一样的)。这个代理比较厉害,可以同时观察许多流的I/O事件,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有I/O事件时,就从阻塞态中醒来,于是我们的程序就会轮询一遍所有的流(于是我们可以把“忙”字去掉了)。代码长这样:

while true {
select(streams[])
for i in streams[] {
if i has data
read until unavailable
}
}

  于是,如果没有I/O事件产生,我们的程序就会阻塞在select处。但是依然有个问题,我们从select那里仅仅知道了,有I/O事件发生了,但却并不知道是那几个流(可能有一个,多个,甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作。

  但是使用select,我们有O(n)的无差别轮询复杂度,同时处理的流越多,没一次无差别轮询时间就越长。再次

  说了这么多,终于能好好解释epoll了。

  epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll之会把哪个流发生了怎样的I/O事件通知我们。此时我们对这些流的操作都是有意义的。(复杂度降低到了O(1))

  在讨论epoll的实现细节之前,先把epoll的相关操作列出:

epoll_create 创建一个epoll对象,一般epollfd = epoll_create()  

epoll_ctl (epoll_add/epoll_del的合体),往epoll对象中增加/删除某一个流的某一个事件
比如
epoll_ctl(epollfd, EPOLL_CTL_ADD, socket, EPOLLIN);//注册缓冲区非空事件,即有数据流入
epoll_ctl(epollfd, EPOLL_CTL_DEL, socket, EPOLLOUT);//注册缓冲区非满事件,即流可以被写入
epoll_wait(epollfd,...)等待直到注册的事件发生
(注:当对一个非阻塞流的读写发生缓冲区满或缓冲区空,write/read会返回-,并设置errno=EAGAIN。而epoll只关心缓冲区非满和缓冲区非空事件)。

  一个epoll模式的代码大概的样子是:

while true {
active_stream[] = epoll_wait(epollfd)
for i in active_stream[] {
read or write till
}
}

  限于篇幅,我只说这么多,以揭示原理性的东西,至于epoll的使用细节,请参考man和google,实现细节,请参阅linux kernel source。

Epoll模型讲解的更多相关文章

  1. [转载]我读过最好的Epoll模型讲解

    转载来自:http://blog.csdn.net/mango_song/article/details/42643971 首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行 ...

  2. Epoll模型详解

    Linux 2.6内核中提高网络I/O性能的新方法-epoll I/O多路复用技术在比较多的TCP网络服务器中有使用,即比较多的用到select函数. 1.为什么select落后    首先,在Lin ...

  3. linux epoll模型

    原文:http://yjtjh.blog.51cto.com/1060831/294119 Linux I/O多路复用技术在比较多的TCP网络服务器中有使用,即比较多的用到select函数.Linux ...

  4. 转一篇关于epoll模型的博文

    以前就看过这篇关于epoll文章,现在又翻出来看了一下,很久不看的知识真是容易忘啊. 原文出处: http://blog.163.com/huchengsz@126/blog/static/73483 ...

  5. NIO学习笔记,从Linux IO演化模型到Netty—— 从BIO到epoll模型

    本文不涉及具体代码,只分析Linux IO演化的心路历程,学习资料来源网络,不保证一定正确,若有错误,欢迎指出. BIO 服务端创建socket(80端口),文件描述符3号. 当线程调用accept时 ...

  6. 【转】select和epoll模型的差异

    http://www.cppblog.com/converse/archive/2008/10/12/63836.html epoll为什么这么快 epoll是多路复用IO(I/O Multiplex ...

  7. Linux网络服务器epoll模型的socket通讯的实现(一)

    准备写一个网络游戏的服务器的通讯模块,参考网上看到的一些代码,在linux下面实现一个多线程的epoll模型的socket通讯的代码,以下是第一部分多线程的切换代码: 1 #include <s ...

  8. (OK) Linux epoll模型—socket epoll server client chat

    http://www.cnblogs.com/venow/archive/2012/11/30/2790031.html http://blog.csdn.net/denkensk/article/d ...

  9. nginx中的epoll模型

    要了解epoll模型,就要一个一个知识点由浅至深地去探索. 1.IO复用技术 IO流请求操作系统内核,有串行处理和并行处理两种概念. 串行处理是前面一个操作处理地时候,后面的所有操作都需要等待.因此, ...

随机推荐

  1. Python3 循环表达式

    一 While循环 基本循环 while 条件: 执行内容 #循环体 ... #循环体 ... #循环体 # 若条件为真,执行循环体内容 # 若条件为假,不执行循环体内容 实例1(Python 3.0 ...

  2. holoeverywhere修改actionbar背景

    <style name="Holo.Theme.Light.MyActionBar" parent="Holo.Base.Theme.Light.DarkActio ...

  3. js中斜杠转义

    js中“/”不需要转义. if(myPath.indexOf("/Upload/EmailFile/")!=-1){ alert("有附件!")}

  4. JVM(一)运行机制

    1.启动流程 2.JVM基本结构 PC寄存器 >每个线程拥有一个PC寄存器 >在线程创建时创建 >指向下一条指令的地址 >执行本地方法时,PC的值为undefined 方法区 ...

  5. Spring编程式事务管理及声明式事务管理

    本文将深入讲解 Spring 简单而强大的事务管理功能,包括编程式事务和声明式事务.通过对本教程的学习,您将能够理解 Spring 事务管理的本质,并灵活运用之. Spring 事务属性分析 事务管理 ...

  6. 在ios 上 按钮 disabled 样式显示异常

    将input,button或textarea设置为disabled后,在iphone手机上样式将被覆写-webkit-appearance:none; 文字的颜色还是灰色. 原本在android 上 ...

  7. HTML5+ API 学习

    HTML5+ API 模块整理 API Reference 模块 中文 模块介绍 Accelerometer 加速计 管理设备加速度传感器,用于获取设备加速度信息,包括x(屏幕水平方向).y(垂直屏幕 ...

  8. 前台界面(2)---CSS 样式

    目录 1. 内联样式 2. 层叠样式表CSS 2.1. 类选择器 2.1.1. 颜色设置 2.1.2. 字号设置 2.1.3. CSS边框属性 2.1.4. 设置背景颜色 2.1.5. 设置布局边框 ...

  9. BZOJ3123:[SDOI2013]森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3123 https://www.luogu.org/problemnew/show/P3302 树上主 ...

  10. Linux实验二

    一        第一个实验 Linux基础 1 通过娄老师关于分析学霸学渣的前言 明白了真正的学习一门功课应该是思考本质 而不是纯属记忆 2 全部的命令如下 Linux命令格式:command [o ...